
ICF100767OR 
 
 
 
 
 

FLUID-STRUCTURE INTERACTION RELATED ASPECTS  
DURING THE GROUTING OF CRACKS IN CONCRETE 

 
H.N. Linsbauer 

 
Institute of Hydraulic Structures, Vienna University of Technology, 

Karlsplatz 13/222, A-1040 Wien, Austria  
 
 

ABSTRACT 
 
Fluid Structure Interaction (FSI) processes in cracked systems generally may be assigned to “Hydraulic 
Fracturing”, which in the field of petroleum-engineering is well understood by mathematical and numerical 
descriptions and  utilisation in situ. However there is a further important aspect related to this technique but 
opposite in the objective – grouting of cracked concrete structures under the aspect of full rehabilitation. 
Unfortunately uncontrolled grouting may sometimes cause an opposite effect, e.g. creating of new cracks or 
further crack propagation. Based on the understanding of the closely coupled process between the injected  
fluid and the structural response especially the Stress Intensity Factor development at the crack front may 
serve as an efficient control parameter during the grouting procedure. 
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INTRODUCTION 
 
A certain category in the wide field of fluid structure interaction processes also has to be considered in civil 
engineering in all cases where an elastic structure in dynamic motion is in contact with a fluid at rest or vice 
versa. A wide class of problems  stretching from flow induced vibrations in hydraulic engineering [1] to 
added mass concepts in dam engineering [2] may be assigned to this discipline. The injection procedure 
during the grouting of cracks in concrete structures  also may be seen as an interaction between fluid 
penetration and structural response and basically is comprehended by the disciplines of fluid mechanics, 
structural mechanics and fracture mechanics. The closely coupled process is characterised by the time 
dependent fluid penetration as a function of the crack width and the herewith associated pressure 
development causing a further alteration of the cross section. In addition the stress intensity at the crack 
front, accountable for the stability (reliability)  of the grouting procedure, is directly related  with. The 
physical-mathematical formulation of these complex circumstances ever since has been a matter of special 
concern in the field of petroleum-engineering under the aspects of  “hydro-fracturing “, to achieve optimal 
production conditions. Representative for the multitude of relevant treatises, Lit. [3,4,5,6] including 
recommendations for further readings, is specified. The grouting process of cracks mathematically may be 
exhibited similar to that one representative for hydraulic fracturing but with an essential difference 
concerning the crack (tip) behaviour. Opposite to the “hydraulic driven fracture” - a continuously moving 
fluid-fracture system – care has to be taken, strictly to avoid any instability of the system during grouting. 
Within this contribution  a model both for a plane and a penny-shaped crack configuration is presented to 
comply with this demand.  
 
 



MATHEMATICAL MODEL 
 
Due to the intimately coupled process between the crack width-dependent fluid flow and the herewith 
pressure induced alteration of this flow-section as response of the structure (as shown in Figure 1), both fluid 
mechanics  and structural mechanics principles have to be observed. Simultaneously, the stress development 
at the crack front  has to be considered under the aspects of fracture mechanics methods. 
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Figure 1: Scheme of the fluid-structure interaction process 
a) penny shaped crack   
b) wedge shaped crack 

 
Fluid Mechanics Formulation 
The physical description of fluid flow is based on the fundamental conservation principles – conservation of 
mass, momentum and energy, constitutive relationships  and equations of state [7]. Disregarding the energy  
principle (which is not relevant for the present case), the characteristic equations for  the conservation of 
mass and momentum are given by Eqn. 1 and  Eqn. 2 (Cauchy equation of motion) respectively. 
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Combining the conservation equations Eqn. 1 and Eqn. 2 with the constitutive relationship Eqn. 4 results in 
the Navier-Stokes equation:  
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Flow in a gap (crack) 
For a flow in a narrow gap or crack some specific attributes are significant. Under the physically admissible 
assumption that the velocity component in z-direction is zero, the continuity equation (Eqn. 1) results in  
δu/δx = 0, which means that the flow is unidirectional and such the convective term  in the substantial 
derivative vanishes. Under these aspects and by neglecting the body force, the Navier-Stokes  equation  for 
the steady state case reduces to: 
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with C is the compressibility of the liquid. 
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with γ = x,  n = 0 and  γ = r,  n = 1 for t
respectively. The function f(ka) is a friction c
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Structural Mechanics Representation  
The response of the ‘unbounded impermeab
the flow induced pressure development is giv
intensity factor growth rate at the crack fron
[9] for both cases and is represented by Eqn.
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with γ = x, Γ = L, n = 0, χ = 0  and  γ = r, Γ = R, n = 1, χ = r0  for the planar crack and the axially symmetric 
crack configuration respectively. The surrounding medium is defined through the modulus of elasticity E 
and the Poisson ratio ν,  r0  is the radius of the bore-hole . The mode 1 stress intensity factor (SIF) expression 
for both cases reads:  
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with the same labels as defined above. 
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NUMERICAL METHOD 
 
The solution of the fluid flow equations Eqn. 9 under consideration of appropriate initial and boundary 
conditions and under direct compensation of Eqn. 10 at each time step (decoupling) was carried out by an 
implicit finite difference scheme. A detailed discussion weighing up the pros and cons compared to the 
explicit method may be found in Lit. [10] and is not discussed further here.  An essential disadvantage lies in 
the fact that the ‘propagation speed’ is infinite and therefore the fluid front at each time step is adjusted due 
to a surface tension criterion and a global mass balance consideration. According to the  particular boundary 
condition an associated tridiagonal algebraic system has to be solved. Additionally, at each time step the 
determination of the stress intensity factor is carried out via Eqn. 11.  
 
 
SOLUTIONS (EXAMPLES) 
 
Each method is as good as the correspondence to results of natural cases or experiments to be simulated 
with. Therefore a comprehensive  investigation with the planar model has been carried out for in situ cases 
(grouting of cracks in the Koyna dam), block tests (repair of Zeuzier dam) and basic experiments with gaps 
formed by stiff steel plates. The results are documented in Lit. [11], which mainly is focussed on the 
engineering aspect of the procedure. A Fortran routine for the axial symmetric case is given in Lit. [12]. The 
pressure development for an open  ‘gap’ , simulating an in situ procedure [13] is given in Figure 2, where 
also an extension up to a steady state behaviour is carried out, showing the typical logarithmic characteristic. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2: Pressure development in an open ‘gap’ 
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The pressure distribution and the associated time dependent Stress Intensity Factor (SIF) development in a 
radial crack configuration with wedge shaped geometry is documented in Figure 3a and in Figure 3b. The 
abrupt transition in the  SIF-diagram up to the static pressure is typical for the fluid front approaching the 
crack tip. This analysis can be used for a save grouting procedure, to control the pressure according to a 
given limit of the fracture toughness KIC  of the concrete or rock [11].  
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Figure 3: Radial crack system - wedge shaped geometry 
                             a)  pressure development  
                             b) associated Stress Intensity Factor 

 the crack environment on the fluid structure interaction process characterised by a variation 
f Elasticity, both on the pressure distribution, the crack profile and the SIF-development is 

 4a, Figure 4b and Figure 4c respectively.  
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Figure 4: Radial crack system with different moduli of elasticity (E1/E2=10) 
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Whereas for this special case the pressure distributions (Figure 4a) due to different moduli of elasticity with 
a ratio of E1/E2 =10 correspond quite well, naturally the crack opening profiles (Figure 4b) show significant 
discrepancies. The SIF-gradients (Figure 4c) are different,  with a steeper inclination for the softer material. 
.  
 
 
CONCLUSION 
 
The present investigation may be seen as an illustration of the physical process which is characteristic for the 
grouting of cracks. Especially parameter studies can serve the purpose of understanding the influence of 
fluid, matrix and geometrical attributes on a stable procedure. 
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