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ABSTRACT

The recent well publicized failures of the Firestone ATX/AT tires has brought to light the poor
state of research into the basic physical causes of such failures and the poor state of research into
analytic methods suitable for analyzing such failures. The essence of problems of this nature lies in
the finite deformation fatigue fracture of elastomers at large strains. The definition of failure criteria
is further complicated by the issue of material aging. The computational problem is rather demanding
due to the truly 3-D nature of the tire system under load. Finding the failure forces (the singular
energy momentum tractions) is made challenging by the spinning reference state normally utilized in
computational tire analysis. A true analysis of such problems demands that one address all of these
issues; this paper focuses on one aspect of this problem – viz., the formulation of suitable analytic
expressions for the computation of the crack tip driving forces in spinning tires.
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INTRODUCTION

In assessing the durability of tires a common physical phenomena to be investigated for steel belted
radial passenger tires is belt edge cracking. The important physical quantity to be measured or computed
here is the energy release rate. As is well known, energy release rate is the physical quantity introduced
by Eshelby to characterize the driving force upon a singularity in the elastic field [2, 3] and it is intimately
related to the pioneering fracture studies by Ingles [7], Griffith [6], Irwin [8], and Rivlin and Thomas [15].
In the context of fracture, this driving force or energy release rate is often associated with the J-integral
criteria [14, 1]; under common conditions the two are of course synonymous. The application of these
basic notions turns out to be a modestly complex undertaking for a spinning tire. If we leave aside the
experimental aspects, we have available to us a variety of methods for the computation of energy release
rates given mechanical loads. For the tire, one is for practical reasons restricted to methods associated
with numerical approximations such as the finite element method[18]; see e.g. [11, 9] for a discussion on
computational methods for energy release rates. As noted by Govindjee [4] these methodologies have



existed for many years, however, their direct application to the spinning tire in the open peer reviewed
literature is amazingly scarce. In this paper we examine the extension of Steinmann’s method [16, 17]
for finite deformation elasticity to the case of an elastic spinning tire in steady rotation. Analysis in a
steady spinning frame of reference is based upon the early work of Lynch [12] and the basic equations
for such an analysis in finite deformation were first presented by Oden and Lin [13]; more recently see
the discussions of LeTallec and Rahier [10] and Govindjee and Mihalic [5].

ENERGY RELEASE RATE

The issue of an energy release rate computation comes down to the computation of the following
expression:

GA = lim
ε→0

∫
Γ(ε)

Σo
ABN

o
B dΓ(ε) , (1)

where Σo
AB = W (F o)δAB−F o

iAP
o
iB is Eshelby’s energy-momentum tensor, W is the strain energy density,

F o
iA is the deformation gradient, and P o

iA is the first Piola-Kirchhoff stress tensor. The surface Γ(ε) with
normal N o

A surrounds the crack tip and is of radius ε. The result GA is the crack tip driving force or
energy release rate. Note that the result is zero unless the integrand is singular. Steinmann’s method is
based on the subtle observation that this quantity is in fact closely related to the “external work” terms
in the weak form of the balance equation for the energy-momentum field. In the above and throughout
we employ indicial notation with lower case Latin indices for the spatial frame and upper case Latin
indices for the reference frame. The superscript o indicates quantities that are associated with the
usual continuum mechanics definitions which are expressed in terms of a spatial and referential frame.
Later on we will employ greek indices for quantities expressed in a rotating frame and also introduce
transformed counterparts to our usual continuum mechanics machinery; these will appear with the same
symbols modulo the superscript o.

STRONG FORM OF ENERGY-MOMENTUM BALANCE

The starting point for exploiting the observation of [16, 17] is to look at the governing balance
equation for the energy-momentum tensor which can be expressed as:

Σo
BA,A − F o

iBB
o
i = −F o

iBρ̄φ̈
o
i . (2)

In the above, Bo
i represents any body forces (per unit reference volume), ρ̄ the reference density of the

body, and φoi is the deformation (motion) map. The relation follows directly from linear momentum
balance and an assumption on the smoothness of the motion. In what follows we will assume that
Bo
i = 0 since the only direct body forces in the tire are gravitational and these can be safely neglected.

WEAK FORM OF ENERGY-MOMENTUM BALANCE

The weak form of this relation can be expressed with the aid of an arbitrary test function vB and
integration over the reference configuration of the body denoted as B. After integrating by parts one
has that ∫

B
vB,AΣo

BA −
∫
B
vBF

o
iBρ̄φ̈

o
i =

∫
∂B
vBΣo

BAN
o
A . (3)



The term on the right-hand side (RHS) is clearly related to the RHS of Eq. (1). In fact, Steinmann makes
the observation that the RHS of Eq. (3) is the regular part of the “external virtual work” associated
with the balance of energy momentum. For cases where this quantity is zero, the computation of the
left-hand side of Eq. (3) will simply give the singular part. The reason the singular term does not
appear on the RHS explicitly is that we have assumed no singularities during the application of the
divergence theorem. In the case of the tire, the belt edge cracks are open when the cracks are rather
short and possibly for points outside of the footprint; in theses cases the RHS will be zero. For longer
cracks and in the footprint the crack faces are closed and driven in a shear type mode. In this case, the
RHS of Eq. (3) (the non-singular part) will be non-zero. In particular, if we assume frictionless crack
faces and a crack face contact pressure p, then we will have

RHS =

∫
∂B
vBpN

0
AδAB + vBWN0

B . (4)

In order to compute the energy release rate (the singular part of the energy-momentum traction)
this term needs to be subtracted from the LHS of Eq. (3). The feature that make this methodology
attractive is that the machinery necessary for its computation is already built into almost all finite
element programs. After solving for the deformed configuration of a body, one merely needs to evaluate
the integrals in Eq. (3) to determine the energy release rates for any given crack tip.

WEAK FORM OF ENERGY-MOMENTUM BALANCE IN A SPINNING FRAME

The main complication in utilizing Eq. (3) is the inertial terms. However, in the case of steady state
spinning this obstacle can be over come in a straightforward manner utilizing the formalism developed
by Oden and Lin [13]; see also LeTallec and Rahier [10] and Govindjee and Mihalic [5]. In this formalism,
a third coordinate system is introduced that rotates with the tire. In this frame of reference points are
located by their coordinates Xα where Xα = RαB(t)Xo

B and RαB(t) represents the steady rotation of the
tire about its axis of circular symmetry. The mapping from Xα to xi is given by φi. The deformation
gradient from this spinning frame of reference to the spatial frame is given by Fiα = F o

iARαA. Since we
assume the tire is in a steady state rotation we have for the acceleration:

φ̈oi = xi,αβΩβγXγΩαδXδ + xi,αΩαγΩγδXδ , (5)

where Ωαβ = ṘαBRβB is the spin rate of the tire. It is also noted that the surface normals are mapped
as Nα = RαAN

o
A.

For isotropic materials we also have that W (F o) = W (FR) = W (F ) and through an abuse of
notation that W (Co) = W (C), where Cαβ = FiαFiβ. With these results we can now define an energy-
momentum tensor relative to the spinning frame as Σαβ = RαAΣo

ABRβB = W (C)δαβ − CαγSγβ, where
Sαβ represents the second Piola-Kirchhoff stress tensor measured by the deformation from the rotating
frame to the current frame. If now re-examine Eq. (3), we find that the singular part of the energy-
momentum traction is given by

G =

∫
B
RβBvB,αΣβα −

∫
∂B
RβBvBΣβαNα −

∫
B
ρ̄RβBvBFiβδiα(Ω2)αθXθ (6)

+

∫
B
ρ̄RβBvB,δFiβΩαγXγui,αΩδθXθ +

∫
B
ρ̄RβBvBFiβ,δΩαγXγui,αΩδθXθ , (7)

where we have assumed that the boundary ∂B possesses circular symmetry.
To practically execute these integrals we now introduce a finite element approximation by expressing

the motion φi as an element of a finite dimension functions space; ie. as φi =
∑

a x
a
iM

a(X) where xai



are the nodal degrees of freedom and Ma is the shape function associated with node a. Likewise we
approximate the space of test functions such that vB =

∑
a v

a
BM

a(X). From the arbitrariness of the
test function we can now express the energy release rate for the steady rotation case upon any node a
as:

Ga
β =

∫
B
Ma

,αΣβα −
∫
∂B
MaΣβαNα −

∫
B
ρ̄MaFiβδiα(Ω2)αθXθ (8)

+

∫
B
ρ̄Ma

,δFiβΩαγXγui,αΩδθXθ +

∫
B
ρ̄MaFiβ,δΩαγXγui,αΩδθXθ , (9)

In using these relations one needs to also consider the fact that the tire is composed of materials
that are not isotropic. In particular the bead is effectively modeled as transversely isotropic and the
steel belts as orthotropic. For the general conditions of transverse isotropy and orthotropy the above
results do not hold. However, the anisotropy of the tire is very special in that the tire possess a global
geometric invariance with respect to the spin of the tire. In this special case, and in this special case
only, the expressions above also hold for general anisotropy without modification.

APPLICATION

The sequence of computational steps in computing the energy release rate at the tip of a circumfer-
ential belt edge crack is as follows. First one models the tire in circular symmetry. This implies that
the cross tread grooves can not be modeled; only the circumferential tread grooves can be modeled.
For a given tire inflation, speed, and axle force the deformation of the tire is computed by solving
the linear momentum balance equations is a steady rotating frame using the method of Oden and Lin
[13] as presented by Govindjee and Mihalic [5]. Once the deformation state has been computed it is a
straightforward post-processing step to compute Ga

β using the relations from the previous section.
As an example consider the tire geometry of the Firestone P235/75R15 AT tire as described in

Govindjee [4]. We demonstrate some of the types of analysis that can be performed with the method.
Shown in Fig. 1 is the energy release rate at the tip of a 25.5mm circumferential crack for 4 different
inflation pressures as a function of angular position where −π/2 represents the center of the footprint
and π/2 the top of the tire. As can be seen from the figure there is very little effect of inflation pressure
over this range of pressures (at 120 kph and a 4.4 kN axle load). Above 0 rad mesh coarsening reduces
the accuracy of the reported results. As a second example, shown in Fig. 2 is the effect of belt edge
crack length and axle load on the energy release rate increment Gβ(−π/2) − Gβ(0). The figure also
shows some results for the P235/75R15 ATX tire. Clearly such modeling capabilities are essential in
analyzing belt edge crack durability issues.
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Figure 1: Energy release rate as a function of angular position from the horizontal for a 25.5 mm crack
at 120 kph under a 4.4 kN load.
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Figure 2: Energy release rate increments per revolution as a function of load indexed by crack length
at an inflation pressure of 242 kPa and 120 kph.
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