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Abstract: 
 
From a Finite Element analysis, the stress distribution in the notch of axisymmetric and highly loaded 
notched samples has been calculated. The samples are shaped like a thread root. We propose a simplified 
method of sizing screws for a large range of mean stresses.So, a local Haigh’s diagram (at the thread root) 
is built from experimental the Haigh’s diagram derived from smooth or notched samples. 
 
I – Introduction 
 

When trying to predict the fatigue lifetime of a screw used in a highly loaded assembly, the 
designer has to handle two types of difficulties. The first one is to include the effects of the mean stress on 
the damage. The second one, related to the geometry of the screw, is to know the influence of the notch 
effect on the damage in the thread root. The Haigh’s and Goodman’s diagram help us to solve the first 
problem when the mechanical properties of the material are known. Indeed, they give the endurance 
domain in which the applied and the mean stresses have to be located. The second difficulty is partly 
overcome thanks to Neuber’s method or the method of the gradient since they take into account the effect 
of stress concentration inside the thread root.  

Here, the method is based on an elasto-viscoplastic analysis leading to the knowledge of the local 
stress and strain components. Then, a multiaxial failure criterion derived from the damage rules is locally 
applied. This leads to a simple method of building the Haigh’s local diagram. The global method follows 
four steps: 

i) Determination for the considered steel of the elastoplastic behaviour rules under  uniaxial 
loading with or without mean stress. 

ii) Determination of the damage rules leading to the rupture criteria as well as to the cumulative 
calculations. 

iii)  Theoretical and experimental studies of notched axisymmetric samples shaped like a thread 
root. 

iv) Study of the fully screw-bold assemblage. 
We will present here the first three  steps. 
 
II – Materials and experimental methods 
 

The screw steel studied here is a 38CD4 steel oil quenched from 850°C then stress relieved at 
600°C for one hour. This results in a fully martensitic microstructure. Its weight composition is as 
follows: 

 
C % Mn % Si % S % P % Cr % Mg % Fe % 
0.36 0.792 0.232 0.028 0.016 1.039 0.175 balance 
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The whole set of tests were performed at room temperature, on smooth samples as well as on 
axisymmetric notched samples shaped like a thread root of a screw with a null pitch.  

 
The dimensions of the notched samples with triangular profile (external diameter D = 6mm, 

diameter at the notch root d = 4.78mm, angle between the sides of the notch α  = 60° and  α = 120 ° and 
junction radius of the two sides at the notch root r = 0.35mm and r = 0.29mm) leads, following equations 
[1], to the geometric stress concentration factor Kt equal respectively to 2.41 and 2.1. Some specimens 
with circular notch leading to Kt = 1.5 were also tested. 
For these samples, the applied and mean stresses moyEE σσ ,2/∆  are calculated from the normal section 
at the site of the notch. 
 
III – Results and Analysis 
 
3.1) Main mechanical properties of the steel 
 

This steel has the following characteristics : 
A high yield stress R0.2%   around 1000 MPa and a failure stress Rm close to 1100 MPa together with a 
fairly good ductility at failure (>10%). Note that there is quite an important dispersion on these two 
values between the different sets of samples because of the low reproductibility of the heat treatment. 
 

As far as the cyclic properties between symmetric imposed strains are concerned, a continuous 
softening is observed up to the failure. A plateau for the first quarter of cycle is visible together with the 
well curved form of the cycles related to an important Bauschinger effect. The cyclic curves measured at 
a quarter of cycle, at one cycle, at half failure number of cycles NR/2 and at the failure number of cycles 
NR are drawn in Figure 1. When the cyclic loading is no longer symmetric, an important progressive 
strain can be shown, when the maximal stress Maxσ is fixed at 990 MPa and when the mean stress moyσ  is 

less than 280 MPa (Fig. 2). The strong dispersion between the two sets of samples, due to the heat 
treatment, can also be noted. 

 
At room temperature, the viscosity of this steel is too small to be considered. Indeed, after 48 

hours, the relaxed amplitude related to the initial stress amplitude is always less than 10%. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
3.2) Formulation of the constitutive laws   

 
According to the previous experimental observations, a unified viscoplastic formulation with a 

yield threshold, two kinematic hardening ( )2,1(
ijα ) and one isotropic hardening (Y) variables has been 

chosen. The general rules are : 

Fig.1:Monotonic (1/4) and cyclic curves 

)2/(2/ vf es D=D  at one, NR/2 and NR cycles. 

Experiments and modelling 
 

Fig.2 : Ratchet strain as a function of moys for different N. 

Experiments and modelling 
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In these equations : ( ) ( )( ) st
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ijijij orand aas  are the 

deviators tensor components, ijd the Kronecker symbol, <  > the Macauley brackets, that is <x>=xH(x), 
where H(x) is the Heaviside function. 
 

The integration of the rules up to NR (number of cycles to failure), with the identified model leads 
to the responses given in Figures 1 and 2. However, it is possible to choose a set of parameters, for a 
given number of cycles, that is, using new values for the parameters Yst and p1. Thus, at the ¼ of cycle, 
Yst is equal to R0 and at the stabilized cycle, Yst is equal to ( )¥- YR0 , at least for the greatest strain 

amplitudes. We can thus obtain directly the shape and the amplitude of the cycles at ¼ of cycle, for the 
cycle at NR/2 and NR , integrating the rules on only one cycle (Fig.1). For this steel with high yield stress, 
the progressive strain is on one hand due to the non-linearity of the kinematic variables (p1 and p2) and on 
the other hand to the cyclic softening. We can see in Figure 2, that the amplitude of the ratchet zone is 
fairly well modelled (ratchet zone vMax R ss --» 0 ) but although that the ratchet is compatible with 
experimental results even if its amplitude is over-estimated. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
3.3 Fatigue properties and modelling 

 
From the Woehler curves the Haigh’s diagram can be built for smooth samples, giving the 

evolution of the endurance stress related to the mean stress )( moyf f ss = (Fig.3). From an uncoupled 

local approach, the damage variable D is taken with a formulation of the ONERA type {1}{2}: 

Fig.3  : Different Haigh’s diagrams for smooth 
and notched samples. Determination of 
the local diagram. 

Fig.4 : Woelher’s curves of notched specimens 
for different mean stresses. Experiments 
and F.E. calculations. 
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Taking into account the non-linearity of the Haigh’s diagram and the effect of the triaxiality on the 

ultimate stress us , the integration of  equation [3] gives the number of cycles to failure NR. 
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In equations [3] and [4], during each cycle, p and p are the hydrostatic mean stress and the hydrostatic 
maximum stress, )(2 sMaxJ the maximal equivalent von Mises stress, us the ultimate stress in a uniaxial 

tensile test and 0fs the endurance stress at null mean stress. Note that uu ss =* for uniaxial tests on 

smooth specimens and for symmetric cyclic tests ( 0=p ) on notched samples. For 0¹p  on notched 

samples, uu ss ¹* . 
The whole experimental database let us identify all the coefficients involved in  the relations [4], that is: 

- tensile tests without mean stress, 0
0

,,,
1

fu
aM

ssbb , 

- tensile tests with mean stress,  b and b’, 
- torsion tests,l . 
 

During the correlation analysis (NR calculated = f (NR experimental)), the experimental dispersion due to 
the heat treatment has been taken into account. Its single effect is to modify the experimental value of us . 
This leads to a fairly good correlation (factor 2) although the experimental dispersion on the database is 
important. 

 
IV – Study of notched axisymmetric samples 
 
 Figure 4 shows the Woehler curves of notched samples, which lead to the Haigh’s diagram for this 
geometry, )( moyEfE f ss = (Fig.3). For 0=moyEs , we obtain something like tEff K»= 46,200 ss . 

However, the uniaxial tensile tests up to the failure give MPauE 1400»s , which corresponds to the 
linear extrapolation of the experimental points with mean stress (Fig.3).  
 

According to the different experimental applied loadings and using the rules [2], a lot of 
monotonic or cyclic F.E. calculations have been performed (integration over some hundreds of cycles). 
The calculated responses are then compared to the experimental results. The agreement is generally 
correct as shown in Figure 5 for a monotonic test. A study of the parametric sensibility of the results 



shows that the isotropic hardening variable, describing the cyclic softening and responsible for the stress 
redistribution at the notch root, is the first component driving the progressive strain. This result is in 
opposition with the test on smooth samples. We note a strong geometric effect due to the quite high value 
of Kt.  
 

Looking at the stress redistribution, for a symmetric loading, the profile of the von Mises stress 
J2L(σ) along the ligament is clearly continuously decreasing during the cyclic loading to reach the profile 
obtained for the stabilized cycle. This one can be quickly calculated by integrating on only one cycle the 
behaviour rules (Fig.1). These rules are directly identified for the number of cycles to failure NR (Fig.1). 
This results can be checked a posteriori in Figure 6 where the Woehler curves have been obtained by 
post-processing with the relations [4] and using the laws identified with one cycle, at NR/2 and NR (the 
elastic solution is also represented). The prevision of the number of cycles to failure is correct considering 
the rules for the stabilized cycle. Moreover, the good agreement of NR on the whole curve related to 
elastic and plastic cycles shows that when ( ) MPaKR tvEf 249/00 =+< ss , the cycles are elastic {3}. 
 

Looking at the stress distribution for non symmetric loadings, it can be noted that for 
( ) tvmoyEMaxE KR /0 sss ++<  (this limit is drawn Fig.4), the cycles are elastic, ( ) ( )2/2/2 EtL KJ ss D=D  

at the notch root, and the stress redistribution obtained at the end of the first quarter of cycle is stable 
during cycling. Thus, the prevision of NR has been obtained by post-processing over one elastic cycle 
with the law identified at ¼ cycle. The results are correct as shown in Figure 4 (right part of the 
Woehler’s curves).  

 
For ( ) tvmoyEMaxE KR /0 sss ++> , first the mean stress is fully relaxed at the notch root, and then, 

the amplitude ( )2/2 sDLJ  starts to decrease and then increases again before remaining stable. This last 
period is related to the local ratchet (left part of the Fig. 4). The amplitude of the decrease can be easily 
estimated from F.E. calculations leading to the factors of stress intensity KP as a function of 2/EsD , 

respectively for the laws at the first cycle 0
pK and at NR, ¥

pK . The unknown amplitude 

( ) 2/0
Epp KK sD- ¥ can thus be obtained. However, the increase of ( )2/2 sDLJ  is more difficult to 

evaluate. The only way to calculate it, is to use abacus built from F.E. calculations and to give the local 
ratchet rate at the notch root as a function of 2/EsD  and moyEs . Thus, the local stress state should be 

known, 0@moyLs and ( )2/2 sDLJ estimated with the previous method and then NR is deduced from the 

Woehler’s curve on smooth samples at 0=moys . For small values of NR ( 310<RN ) the previsions are 
good because the local ratchet rate is fairly well known. The extrapolation of the calculation is done on 
less than a decade. For higher values of NR, )10( 4@RN the accuracy is not so good because of the ratchet 
rate is not precisely known anymore. 

 
 The F.E. method, using the law at ¼ of cycle of the evolution for a monotonic test, with  the 
coefficients MaxEMaxLm pK s/3= and MaxEMaxLp JK ss /)(2= as a function of MaxEs (or moyEs ) let us 
estimate the local Haigh’s diagram (Fig.3). Hence, for a given point of the global diagram of the notched 
specimens, its ordinate is multiplied by Kt and its abscissa by )( MaxEmK s . The local rupture stress for a 

monotonic test is given by 
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shown (from the knowledge of uEuEff and ssss ,, 00 ) that a unique dimensionless Haigh’s diagram can 
be built for smooth and notched specimens {3}. It is thus possible to work with a diagram (smooth) or the 
other (notched). 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
V – Conclusion 
 
 For the studied steel, the stress redistribution at the notch root has been shown to be mainly 
managed by the isotropic hardening variable describing the cyclic softening. Thus, a simple method is 
proposed, knowing the parameters mpt KKK ,, (F.E. calculations) and uEuEff and ssss ,, 00  
(experimental data), to deduce from the global diagram (smooth or notched specimen) the local Haigh’s 
diagram at the notched root. In this case, the cycles are elastic. 
When the cycles are plastic with 0=moyEs , the integration of the behaviour rules for the stabilized cycle 

following by the post-processing calculations of the failure rules allow us toestimate NR. However, if 
0¹moyEs , the local mean stress is fully relaxed, the amplitude of the cycle starts to decrease and then 

increases because of the local ratchet strain. In this case, it is more difficult to estimate precisely NR if the 
local ratchet rate is not precisely known. 
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Fig.5 : Monotonic stress-strain curves for smooth 
and notched specimen. Experiments and 
modelling. 

Fig.6 :  Woehler’s curves for smooth and notched 

specimens ( 0=moys ). Experiments and 

F.E. calculations. 


