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ABSTRACT 
 

  It has been required strongly to evaluate fatigue strength of spot welded joint accurately in the stage of 
designing automobile body structure. There is a evaluation method of fatigue strength based on stress intensity 
factors K  in linear fracture mechanics. We applied Element Free Galerkin Method (EFGM) developed by T. 
Belytschko et al. to calculating stress intensity factors K  of spot welded double cup specimen (is called DC 
for short) under multiaxial loads, and investigated the accuracy of the solutions. This paper shows that K 
obtained by using EFGM are appropriate results.      
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INTRODUCTION 
 

 It has been required strongly to evaluate fatigue strength of spot welded joint accurately in the stage of 
designing automobile body structure. There is a evaluation method based on stress intensity factors K  in 
linear fracture mechanics. In order to obtain value of K  accurately using finite element method (FEM), the 
detail division of elements on spot welded joint model is essential. In crack growth problem, the 
rearrangement of nodes and elements around a crack tip is needed through progress of crack. Especially, this 
rearrangement is the most difficult work in three-dimensional problems. Meshless method, which needs no 
elements on analytical model, is of great advantage to solving crack growth problem.  
   In this paper, we applied EFGM developed by T. Belytschko et al. [1] to calculating stress intensity factors 
K  of double cup specimen (DC) under multiaxial loads, and investigated the accuracy of the solutions.      
 
 
DC SPOT WELDED JOINT AND ANALYTICAL MODEL 

 
The test specimen composed of two cups, called DC shown in Figure 1, is spot-welded at center in the 

bottom of the cups. Dieter Radaj et al. [2] suggested DC for fatigue strength under multiaxial load. We 



consider the part around nugget as a ringshaped crack and apply EFGM to linear fracture mechanics and 
evaluate K  of DC. 
 We consider analytical model as only bottom of the cups as shown in Figure 2. When we analyze DC acted on 
multiaxial loads, the DC is analyzed as superposition of the load which is divided into cross tension (β
=90deg) and tensile shear(β=0deg). When cross tension(β=90deg) is acted on DC, the elastic stress analysis 
comes to be a axisymmetric problem. When tensile shear(β=0deg) is acted on DC, the elastic stress analysis 
comes to be a axisymmetric body problem.  
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   Figure 1: Double cup joint under out-of-plane                     Figure 2: Analytical model 
 
 

GOVERNING EQUATION AND BOUNDARY CONDITIONS 
 

   Analyzing stresses and strains of DC by theory of elasticity are boundary-value problems of partial 
differential equations expressed as following equations: 

 
 0, =+ ijij bσ        inΩ              (1-a) 

    ii uu =       on uΓ              (1-b) 

iijj tn =σ        on tΓ              (1-c) 
 

    Where Eqn. 1-a is a governing equation of stress field, Eqn. 1-b is a fundamental boundary condition, and 
Eqn. 1-c is a natural boundary condition. The notation j,  represents partial different with respect to space 
coordinate . Eqn. 1-a is expressed by using Einstein’s summation convention. ( yxxxx j == 21 , ) ijσ  is stresses, 

 is a body forces, Ω  is an analytical domain bounded by ib Γ , tΓ  is a boundary acted by given surface forces 

it , and Γ  is a boundary prescribed displacements u iu . n  can be considered to give the direction cosines of 
the unit normal of the interface on which the traction force is desired. 

j

  A equilibrium conditions for a linear elastic body are identical with minimizing total potential energy 
expressed in Eqn. 2: 
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 Where ijε  is component of strain. α  is a penalty number which is a large positive number for reliving a 

fundamental boundary condition with a penalty method. 
   Interpolation function in FEM is set by each element but the one of EFGM is locally set by using moving 
least square method (is called MLSM for short) . In the MLSM of two-dimensional problem, the function u  
of arbitrary evaluation point  in the domain is approximately expressed as: 
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  Where  are multinomial expression including space coordinatesjp ( )yx, ,  are coefficients undefined.  jc
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  In the MLSM, the coefficients c  are obtained by minimizing the following weighted square expression 
.  
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  Where  iii yx=x

ixx =

 is the coordinate of a node i in the neighborhood of evaluation point  and  is the 

nodal value at .  is the number of nodes in the neighborhood of x . 

x iu

n )ixx −(w  is a weight function 

defined in the neighborhood of x . We used four-dimensional spline function in Eqn. 7 as )( ix−w .  x

ixx −  is norm of vector ixx −  and stands for the distance from the evaluation point  to node . x ix
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    Where iwr xx −=  and ρ  is a radius of circular domain of influence in two dimensions. The stationary of 

 in Eqn. 5 with respect to  leads to the following equation. J )x(c
 

( )uBcA yxyxyx ,),(),( =                     (8-a) 
or 

( )uBAc yxyxyx ,),(),( 1−=                    (8-b) 
 
    Where A  , B  and u  in Eqn. 8 are defined by following equations. 
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 Eqn. 8-a must be solved accurately to retain the accuracy of the MLSM interpolant. When the matrix  is 

not well conditioned, Eqn. 8-b cannot be solved with desired accuracy. However the necessity for solving Eqn. 
8-a can be eliminated by diagonalizing the matrix . To diagonalize the matrix A , we obtained orthogonal 
basis function q  by using Schmidt orthogonalization procedure. The coefficients c  can be expressed 
by using Eqn. 8-a with . Thus, by substituting the coefficients c  for Eqn. 3, the MLSM interpolant 
approximation can be expressed as follows: 
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 By using a method developed by T. Belytschko et al, we divide the analytical domain into regular and 



latticed domain named background cell. The cell has a unit which is integrated variation πδ  of integral 
equation 2. We apply Gauss integral to integrating each cell. We use MLSM for evaluating an integrand of 
Gauss integral point. We obtained stiffness equation by discreting variation πδ  on the value of node. 

 
  
STRESS INTENSITY FACTORS 
 
  Stress intensity factors  can be obtained directly by using stresses or displacements around crack 
tip. We set newly a coordinate system which has a origin around crack tip as shown in Figure 3.The relation 
between 

ⅢKKK III ,,

K ,  which is a relative displacement in  direction and u∆ cx v∆  which is relative displacement in  
direction and  which is relative displacement of circumferential direction are expressed as: 
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 Where E  is a young’s modulus, ν  is a Poisson’s ratio, r  is a distance from crack tip. K  are 

obtained by substituting relative displacements 
ⅢKKIII ,,

u∆ , v∆ , w∆  calculated by EFGM for Eqn.11. We can obtain 
K  by extrapolating  to . ⅢKKK III ,, 0r→
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Figure 3: Distribution of nodes and background cells around crack tip 
 

  By adopting the maximum tangential stress criterion (F. Erdogan and G. C. Sih`s criterion), initial crack 
under  mixed modes grows in the direction of angle III KK , 0θθ =  inclining to  axis in Eqn. 12. Maximum 
principal stress intensity factor  is obtained by Eqn. 13. 
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ANALYTICAL RESULTS 
 

  Before we calculate K  of DC using EFGM, we apply EFGM to calculating K  of finite flat plate named 
single edge crack of which exact solution has been known (Figure 4), and examine the accuracy of the solution. 
Table 2 shows the results of K  of single edge crack using EFGM under the analytical condition shown in 
Table 1. We get analytical domain to be half of the total length. The K  values of crack obtained by using 
EFGM are in agreement with the exact solutions. 

 
 

TABLE 1  
ANALYTICAL CONDITION 



 
Height Width Load
b(mm) w(mm) σ(N/mm2)

30 20 1000
The number of nodes The number of cells Node distribution

29×43 20×30 Uniform distribution  
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Figure 4: Finite flat plate with single crack subjected to uniform tension  

 
 

TABLE 2  
STRESS INTENSITY FACTORS OF SINGRE EDGE CRACK  

  

Error
a(mm) a/w(-) Analytical solution Exact solution

5 0.25 0.594 0.595 0.10
10 0.5 1.611 1.584 -1.68
15 0.75 5.800 5.799 -0.02

Stress intensity factors K(×104N/mm3/2)Crack length
)( ％e

 
 
 On the basis of the analytical results shown in Table 2, we will arrange nodes and background cells 

uniformly and calculate stress intensity factorK  of DC by EFGM. Figure 3 shows the distribution of nodes 
and background cells around crack tip. 
    Because DC shown in Figire 1 has a crack in analytical domain, there is a possibility of including the 
boundary between nodes and evaluation point. Therefore giving equal weight to the nodes across and beyond a 
boundary causes to decrease accuracy of the solution and therefore we define the domain of influence around 
a boundary (crack) as shown in Figure 5.  
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Figure 5: Domain of influence 

 
Table 3 shows the analytical results of DC which is changed load direction β(from 0deg to 90deg ) by using 

EFGM. We get diameter of nugget to be t5 . 
TABLE 3  

STRESS INTENSITY FACTRORS OF DC  
 



Load direction Diameter Plate thickness Load ナゲット径

β(deg) D(mm) t1=t2(mm) P(N)  d (mm) Kθmax θ0(deg)
0 34.2 0.8 1000 4.48 0.000 0.152 0.000 0.176 -70.5

15 34.2 0.8 1000 4.48 0.222 0.147 0.664 0.319 -46.0
30 34.2 0.8 1000 4.48 0.428 0.132 0.308 0.481 -29.7
45 34.2 0.8 1000 4.48 0.605 0.108 0.178 0.632 -19.1
60 34.2 0.8 1000 4.48 0.741 0.076 0.103 0.753 -11.5
90 34.2 0.8 1000 4.48 0.856 0.000 0.000 0.856 0.00

Stress in K (×103 N/mm3/2)
III KK /)0( =ΨIK )0( =ΨIIK
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Figure 6: NcK −∆ maxθ  curve 

 
 Figure 6 shows ∆  which can be obtained by the data of fatigue test (∆  curve) and  
obtained by EFGM. Figure 6 show the data are gathered in narrow range. So we can say 

NcK −maxθ Ncp − maxθK
K  obtained by using 

EFGM are appropriate results. 
 
 

CONCLUSIONS 
 

We applied EFGM to calculating stress intensity factors K  of DC under multiaxial loads, and investigated 
the accuracy of the solutions obtained.      
 Main results were as follows. 
 
(1) In order to examine the accuracy of solutions of K  obtained by using EFGM, finite flat plates named 

single crack under uniform tension were analyzed by applying EFGM as two dimensional elastic problem. 
(1) The K values of cracks obtained by EFGM were in agreement with the exact solutions.  
(2) When we analyzed DC acted on multiaxial loads, the DC was analyzed as superposition of the load which 

was divided into cross tension and tensile shear. From the value of K  obtained by EFGM, the data of 
fatigue could be arrange systematically. So we could say K  obtained by EFGM were appropriate results. 
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