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ABSTRACT 
 
Accurate determination of the shape of a crack is important during fatigue. On the other 
hand, simulation may require a considerable number of fatigue evaluations that 
correspond to a wide range of crack shapes. Therefore, the numerical methods employed 
to carry out this task need to address the issues of accuracy, robustness and efficiency. In 
this paper, a fourth order Runge-Kutta scheme is used for crack shape evaluation and its 
accuracy is first assessed by comparison to closed form solutions for a surface cracked 
plate under tension and by means of a convergence study for the surface-cracked butt 
welded plate in tension. Finally, a convergence study is carried out on the fatigue lives of 
Monte Carlo samples of the latter geometry. This last study is carried out by assuming 
that crack growth follows a bi-linear law. 
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INTRODUCTION 
 
Under fatigue, cracks grow while retaining a semi-elliptical shape. Accurate 
determination of the crack shape is important at all times during the crack evolution since 
accurate stress intensity factor determination and hence rate of crack growth is heavily 
reliant on the dimensions of the crack. For a two degree-of-freedom surface crack, and 
assuming that the Paris C parameters are the same in both directions [1], the pertinent 
equations are: 
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Here, the point A refers to the deepest point of the crack border and the point C to its 
surface counterpart. The differential Eqns. 1 and 2 may be solved for a plate with 
thickness t by solving one of the two as a differential equation and integrating the other 
one thus, 
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where Sr is the stress range, YA is the stress intensity magnification factor for A, Q is the 
elliptical shape factor [1], and the subscripts in and f denote the initial and final values, 
respectively. Note that YA is a function of both a/t and a/c, the latter being calculated 
from Eqn. 3. Eqn. 4 may be solved using any numerical integration scheme and here the 
integral is calculated using 24-point Gauss integration. Eqn. 3 may be obtained by using 
any high order method. Here, the fourth order Runge-Kutta scheme is investigated using 
different number of steps. In order to demonstrate the robustness of the Runge-Kutta 
scheme, two geometries are investigated in this paper, both under tension. First, the case 
of the semi-elliptical surface crack in a plate under tension is investigated since analytical 
solutions of Eqn. 3 exist for different integer m [2] and these are directly compared with 
the results of the proposed numerical scheme. Then the case of the semi-elliptical surface 
crack in a butt-welded plate under tension is examined by means of a convergence study 
on the statistical characteristics of the crack shape and the fatigue lives while the latter 
are calculated based on a bi-linear crack growth law.  
 
 
ERROR ESTIMATION 
 
Semi-elliptical surface crack in a plate under tension 
The factor YA used here is the Newman-Raju solution [3]. An analytical expression of 
Eqn. 3 in this case was supplied by Wu [2] for m=2 and m=3. The results for m=5 and 
m=6 are straightforward to derive and are given by Eqns. 5 and 6 for m=5 and 7 and 8 for 
m=6. 
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where 
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The robustness of the Runge-Kutta (R-K) scheme employed here was investigated by 
assuming different combinations of (a/t)in, (a/c)in taken from the interval (0,1), 
calculating (a/c)f  for (a/t)f = 1 by using Eqn. 3 and comparing with their analytically 
derived counterparts.  In total, 400000 different combinations of these variables were 
used. The statistical characteristics of the differences between the numerical 
approximation of Eqn. 3 and the analytical solution are shown in Figure 1 and are 
presented in the form of mean and mean + standard deviation curves of the percentage 
difference between the proposed numerical scheme and the exact solution. The mean 
error lines demonstrate that, larger errors irrespective of the number of R-K steps used 
are observed for lower m values. However, the scatter is significantly smaller for low m 
values and decreases as the number of R-K steps increases. 
 
Semi-elliptical surface crack in a butt-welded plate under tension 
The factor YA used for this geometry is given in the Appendix. In this case, a closed form 
solution cannot be obtained as was done for the previous geometry. Consequently, 
differences are reported here with respect to the forty-step R-K scheme. Errors in (a/c)f 
were calculated again for the same values of (a/t)in, (a/t)f (=1) and (a/c)in as in the 
previous section. The results are shown in Figure 2. The scatter, which is depicted by the 
solid lines, diminishes with decreasing m.  The highest mean errors are here recorded for 
m=6, which drop below 5% for R-K steps greater than 10. The highest scatter is again 



recorded for m=6 and this drops below 5% for R-K steps greater than 18. These results 
indicate that use of lower order schemes at the same small number of steps could result in 
unacceptably high errors. The convergence characteristics may also be investigated in a 
more comprehensive manner by looking at the fatigue lives calculated via Eqn. 4 in a 
probabilistic way. Here, the bi-linear crack growth law proposed in BS 7910 [1] is used. 
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Figure 1: Mean and mean + s.d. curves of the errors in (a/c)f as functions of the R-K 

steps for a cracked plate 
 
The crack growth model comprises two lines, each being described by its own Paris 
parameters. The crack growth law is described by the following equation 
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where ∆Kthr is the threshold stress intensity range and ∆Ktr is the stress intensity range 
corresponding to the intersection of the two crack growth lines. The deterministic and 
probabilistic variables and their characteristics used here are the same as in Reference [4] 
with the added random variable of (a/c)in, which was assumed to be lognormally 
distributed with mean 0.01 and coefficient of variation 0.5 . The Paris parameters m1 and 
m2 were taken to be deterministic and equal to 5.10 and 2.88, respectively, in accordance 
with BS 7910 [1].  Errors here were calculated with respect to the estimate arising from 
the application of the highest number of R-K steps (nI, nII = 10) in both crack growth 
regions. Results are shown in Figure 3. Additional information is given by the inset of 
this figure. The figure shows that in this case, the influence of the number of R-K steps in 
the near threshold crack growth region (I) is far more important than in the Paris region. 



Consequently, it is quite clear that acceptable accuracy (error < 5%) may be obtained by 
using a (3,nII) R-K with nII>1.   
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Figure 2: Mean and mean+s.d. curves of the errors in (a/c)f as functions of the R-K steps 

for a cracked butt-welded plate 
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Figure 3: Variation of error in mean fatigue life with number of R-K steps in the two 

crack growth regions 
 



 
 
CONCLUSIONS 
 
The numerical characteristics of a fourth order Runge-Kutta scheme used to evaluate the 
crack shape during fatigue crack growth were presented in this paper. These were first 
compared against available analytical solutions for the case of a surface cracked plate 
under tension. Errors were then calculated in the form of a convergence study for a 
cracked butt-welded plate under tension. Both studies were carried out for a wide range 
of initial crack depths and shapes. The robustness of the scheme was also investigated 
with reference to fatigue lives as these were calculated using Gauss integration of a bi-
linear crack growth law. Motivation for this work was supplied by the need to determine 
accurately fatigue lives within Monte Carlo simulation of the recently proposed bi-linear 
crack growth model of BS 7910 [1].     
 
 
ACKNOWLEDGEMENTS 
 
The author would like to thank Professor Chryssanthopoulos for his encouragement and 
support. This work forms part of a project, which is sponsored by the UK Highways 
Agency. Their support is gratefully acknowledged. 
 
 
REFERENCES   
 
1. BS 7910 (2000). Guide on methods for assessing the acceptability of flaws in metallic 

structures. BSI, London. 
2. Wu, S.-X. (1985) Eng. Fract. Mech. 22, 897 
3. Raju, I.S. and Newman, J.C. (1979) Eng. Fract. Mech. 11, 817. 
4. Righiniotis, T.D. and Chryssanthopoulos, M.K. (2001). In: Proc. 8th International 

Conference on Structural Safety and Reliability. To be presented. 
 
 
APPENDIX 
 
For a welded plate, the factor YA is given by 
 

mkmA MMY =  
 
where Mkm is the magnification factor associated with the weld [1] and Mm is the 
Newman-Raju plate solution [3]. 
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