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ABSTRACT

Special interface elements that account for ductile failure by void growth to coalescence are used to analyse
crack growth under mode I loading conditions. The tangential stresses inside the interface are determined by
requiring compatibility with the surrounding material in the tangential direction. Earlier applications of the mod-
el are here extended to consider the effect of a T–stress or effects of void nucleation inside the interface elements.
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INTRODUCTION

For the analysis of crack growth by a ductile failure mechanism the fracture process zone is represented in terms
of special interface elements in the crack plane ahead of the crack. The modified Gurson model is used in the
interface elements to represent the nucleation and growth of voids to coalescence. In relation to the finite element
mesh the initial width of the interface is taken to be zero, but the traction separation relations represented by the
interface are based on assuming an interface width of the order of the void spacing.

The present interface element formulation is not based on assuming that the plastic strains or the stress state in-
side the interface are identical to the values of these field quantities in the material adjacent to the interface (as
in Tvergaard and Hutchinson [1] or Sigmund and Brocks [2]) . Instead, the present model enforces the continuity
of the longitudinal strain along the band, across the band interface. Thus, the stiffnesses of the cohesive zone
element give a coupling between the displacement normal to the band and those tangential to the band.

Predictions of this cohesive zone model have been presented previously, for growth of pre–existing voids under
mode 1 loading conditions (Tvergaard [3]). In the present paper the model is extended to account for the effect
of void nucleation inside the interface elements. Furthermore, the model is used to estimate the effect of a T–
stress on predicted crack growth resistance curves.

DUCTILE FAILURE MODEL FOR INTERFACE

In the computations the initial width of the special interface element is taken to be zero, as in other cohesive zone
calculations [1]. However, the traction–separation properties of the interface element are calculated based on



Fig. 1: Interface elements along the crack plane. (a) Shows the artificial overlap between inter-
face elements and surrounding elements. (b) A corresponding configuration with no overlap.

a background element with the non–zero initial width  w0  . Fig. 1a illustrates the finite element mesh near the
line of symmetry, with the background interface element sketched in, while Fig. 1b  indicates the configuration
if this interface element is attached to the surrounding elements as a common element. The displacement compo-
nents  un� and� ut  on the top side of the interface element (Fig. 1a) are required to be compatible with the dis-
placements on the edge of the adjacent finite element. Then with the assumption that the displacements inside
the interface element vary linearly through the element width (in the  x2–direction), the displacement gradients
inside the element are
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Furthermore, when choosing to replace displacement gradients by their averages through the element width, we
find  �u2��x

1 � 0  .

From these displacement gradients it is possible to determine the current metric tensor  Gij  , the Lagrangian
strain tensor  �ij  and its increment  �

·

ij  in any point on the middle surface,  x2 � 0  , of the interface element.
Thus the evolution of stresses and of damage inside the interface can be calculated from a set of constitutive
relations. These constitutive relations are based on the modified Gurson model [4,5] , which makes use of an
approximate yield condition for a porous solid
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�3�. The void volume fraction is  f  , and  f*(f)  is a function

that approximately describes final failure by void coalescence. The change of the void volume fraction during
an increment of deformation is taken to be given by
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where the first term results from the growth of existing voids, and the two last terms model the increment due
to nucleation [6] .

The numerical solutions are obtained by a linear incremental finite element method, based on the incremental
principle of virtual work, with the material outside the interface represented by finite strain  J2 flow theory. The
details of the computational method are given in [3] and shall not be repeated here. As described in [3] , an extra
parameter  r0  is introduced, to be able to reduce the tangential components of the nodal forces calculated by
the interface element procedure described above. Thus, if  �Pt

�
elm

  denotes the interface element contribution
to the value of the nodal force component tangential to the interface, as calculated by the interface element proce-
dure, the tangential component  Pt  actually applied in the solution is taken to be given by

Pt � r0�Pt
�
elm

(4)



Here,  r0 � 0  will be used, as this gives the best representation of an initially sharp crack (see further discussion
in [3]). The value of the initial width  w0  of the strip (Fig. 1) is non–zero, representing approximately 0.7 times
the initial void spacing. In the small–scale yielding solution for crack growth, the value of the J–integral is calcu-
lated on a number of contours around the crack–tip to check agreement with the prescribed amplitude  K  of the
edge displacements  (i.e.�K2 � JE�(1� �2))  , and very good agreement is found. For the presentation of the
results reference values for the J–integral and for the corresponding size of the plastic zone are defined
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where the value  K0  corresponds to  J0  .

According to the small strain linear elastic solution the in–plane stress components near the crack–tip are of the
form
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where  �r�,� 	�  are polar coordinates,  �ij  is Kronecker’s delta and  T  is a non–singular stress term, acting parallel
to the crack plane. In the present analyses the T–stress is applied first, together with the corresponding transverse
stress  
33 � �T  under plane strain conditions.

RESULTS

The elastic–plastic material parameters in the first case analysed are specified by  
y�E� 0.002  and  �� 0.3
with the power hardening exponent  N = 0.2  . Furthermore, in the porous ductile material model the initial void
volume fraction is  fI � 0.01  , and other parameter values in the model are
q1 � 1.25�,� fC � 0.15� and� fF � 0.25�. Fig. 2 shows predicted crack growth resistance curves for various
values of the T–stress according to (6) . It is well knows from other fracture models, e.g. [7] , that positive values
of  T  tend to have little effect on the fracture toughness, while negative values of  T  tend to increase the tough-
ness. Therefore, Fig. 2 uses the curve for  T = 0  as reference. The other three curves show that also the present
interface model for ductile fracture predicts increasing fracture toughness for increasing negative values of  T.

In Fig. 3 the level of strain hardening is lower,  N = 0.1  , but otherwise all material parameters are identical to
those considered in the previous figure. It is seen that also here the negative T–stresses give a significant increase
of the fracture toughness, in fact a relatively much larger increase than that found in Fig. 2. This in qualitative
agreement with predictions of a more standard cohesive zone model [7] , where it was also found that the T–stress
effect is stronger for the more low hardening material.
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Fig. 2: Crack growth resistance curves for various values of the T–stress, when  fI � 0.01 ,
N� 0.2� and� ro � 0�.
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Fig. 3: Crack growth resistance curves for various values of the T–stress, when  fI � 0.01 ,
N� 0.1� and� ro � 0�.

The effect of void nucleation is not easily accounted for in interface elements or those of [2] , where the depen-
dence on stress triaxiality outside the interface is based on fitting with various cell model studies. However, in
the present interface elements nucleation criteria can be specified in the usual manner for Gurson model ele-
ments, as the stress and strain fields in the interface elements are fully specified by the conditions of equilibrium
and compatibility with neighbouring elements specified above. Nucleation is here taken to be plastic strain con-
trolled, as modelled in terms of (3) by taking  �� 0� and��� 0�. The dependence of  �  on the effective
plastic strain is specified such that nucleation follows a normal distribution [8] , with the volume fraction  fN
of void nucleating particles, the mean strain for nucleation  �N  , and the corresponding standard deviation  s.

Fig. 4 shows two examples of crack growth resistance curves predicted with void nucleation in the interface.
Both curves use the parameter values  fN � 0.04� and� s� 0.1  , so the only difference is that the lower curve
has a smaller mean strain for nucleation,  �N � 0.1  , than the value  �N � 0.2  used for the upper curve. It is
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Fig. 4: Crack growth resistance curves for cases with plastic strain controlled nucleation in
the interface elements, when  fI � 0.0�,�N� 0.1�,� ro � 0� and�T� 0�.



seen that the material with no initial voids but with void nucleation can show a significantly higher crack growth
resistance than that found in Fig. 3 for a material with voids present initially.
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