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ABSTRACT

Monte Carlo simulation interpreted with theoretical modeling is used to study the statistical fail-
ure modes in unidirectional composites consisting of a hexagonal array of elastic �bers embedded
in an elastic matrix. Composite structure is idealized using the chain-of-bundles model in terms
of bundles of length Æ arranged along the �ber direction. Fibers element strengths in Æ-bundles
are taken to be Weibull distributed and Hedgepeth and Van Dyke load sharing is assumed for
transverse �ber break arrays.

Simulations of Æ-bundle failure reveal two regimes. When �ber strength variability is low, the
dominant failure mode is by growing clusters of �ber breaks up to instability. When this variability
is high, cluster formation is suppressed by a more dispersed �ber failure mode. Corresponding to
these two cases, we construct simple models that predict the strength distribution of a Æ-bundle.
Their predictions compare very favorably with simulations in the two cases.
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INTRODUCTION

Quasistatic failure of unidirectional composite materials, which consist of long aligned reinforcing
�bers embedded in a matrix is a complex stochastic process. While complexity stems from the
occurrence of various damage events preceding formation of a catastrophic crack, statistical vari-
ation in strength primarily arises due to the variability in �ber strength. Consequently composite
tensile strength is itself a statistical quantity and methods to determine its distribution are of
considerable signi�cance in assuring composite reliability.

Idealization of composite structure and material properties are found to be inevitable before
further analysis can be attempted. In this study we assume sti� linear elastic �bers arranged in



a hexagonal array and embedded in a relatively compliant linear elastic non-debonding matrix
so that material damage in our idealized composite is limited to �ber breakages alone. The large
�ber-matrix sti�ness ratio implies that most of the applied load will be borne by the �bers and
the role of the matrix is limited to conducting loads from broken �bers to nearby intact �bers.
This load transfer occurs through shear deformation that tends to occur over a certain length
scale Æ. Æ is typically only a few �ber diameters and is much less than the composite length L.

As has been common in the literature, we idealize the failure process in terms of a longitudinal
partition into m = L=Æ transverse slabs or short bundles of length Æ, called Æ-bundles. The
failure process within a given Æ-bundle is treated as mechanically and statistically independent
of that in neighboring Æ-bundles. The composite is then treated as a weakest-link arrangement
of these Æ-bundles; that is, the composite fails when the weakest Æ-bundle fails. Thus the chain-
of-bundles assumption converts the 3D problem of composite failure into the problem of failure
of the weakest of several 2D Æ-bundles. We also assume that �ber strength X is random and
distributed according to the Weibull distribution

F (x) = PrfX � �g = 1� expf�(�=�Æ)�g (1)

where � is the stress experienced by the �ber, �Æ is the scale parameter for a �ber element of
length Æ and � the shape parameter of the distribution.

We use Hedgepeth and Van Dyke's [1] local load sharing model (HVLLS) to determine stress
concentrations in the plane of a tranverse array of �ber breaks. While we do not delve into
the details of their approach, we note that under HVLLS, the stress concentration around a
penny-shaped crack of r �ber breaks is approximately
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where D is the e�ective non-dimensional diameter of the penny-shaped crack and r = �D2=4.
Also, as the crack size becomes large, the stress concentration decays as 1=

p
t in the near-�eld

where t is distance from the crack tip and shares this characteristic of the near-tip stress �eld
with LEFM.

In this work, we take our Æ-bundles to be rhombus shaped. In every realization of Æ-bundle failure,
gradually increasing load is applied to it in the �ber direction until a �ber fails due to the applied
load just exceeding its Weibull strength. This �ber breaks causes stress redistribution according
to HVLLS which in turn may cause more failures. This back-and-forth process of �ber failures and
stress redistribution is continued until either stability (i.e., no further �ber breakage) is reached
or the Æ-bundle fails. In the case of stability, gradual applied load increment is resumed until the
failure of another �ber. Then the above process of stress redistribution and further �ber failures
is repeated. Eventually, at some applied load(the Æ-bundle strength), a cascade of �ber failures
signi�es catastrophic Æ-bundle failure. We now proceed to describe dominant failure mechanisms
of composite failure observed in simulations and to model them in order to analytically predict
the statistical strength distribution of composite strength.

FAILURE MECHANISMS AND MODELS IN Æ-BUNDLES

1. Small Variability in Fiber Strength (large �)

Snapshots of the damage evolution in the � = 10 median (among 500 simulations) Æ-bundle en
route to failure are shown in Figure 1. The last stage shown corresponds to the arrangement



of breaks immediately after the formation of an unstable system of �ber breaks and before the
catastrophic failure of the remaining �bers. Note that the boundary conditions are periodic so
that a break cluster appearing at one edge may be continued on the opposite edge. Cluster
formation and growth is clearly the dominant failure mode in the specimen shown.
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Figure 1: Snapshots of the failure process in the median (among 500 simulations) Æ-bundle with 900

Weibull �bers of � = 10 under periodic boundary conditions. Open circles 
 denote intact �bers,
N

denote broken �bers.

Following Harlow and Phoenix [2], we have plotted the empirical weakest-link distributions

Ŵn(�) = 1� [1� Ĝn(�))]
1=n (3)

on Weibull paper, in Figure 2 obtained from our Monte-Carlo simulations of failure of Æ-bundles
under HVLLS. Here Ĝn denotes the empirical strength distribution of the n-�ber Æ-bundle. For
� � 2 the Ŵn(�) curves for n = 225, 625 and 900 collapse onto one characteristic curve Ŵ (�).
This n-independent collapse however fails to hold for � = 1. The collapse of Ŵn into a single
curve for � � 2 suggests that the cluster growth failure mode is active for � range in the composite
sizes that were simulated.

We model the cascade event de�ning W (�) as the formation of a break cluster at stress � that
goes unstable. The non-dimensional e�ective diameter D of a tight circular cluster of r breaks
was de�ned earlier as �D2=4 = r. The circumference of the circle, �D =

p
4�r is approximately

the number of intact �bers surrounding this r-cluster. Let Nr be the number of these neighbors
that are severely overloaded. The �rst step is the failure of a given �ber in the Æ-bundle under
�, followed by the failure of one of its N1 = 6 equally overloaded neighbors under stress K1�.
The resulting pair of �ber breaks has eight intact neighbors of which only N2 = 2 are severely
overloaded under stress K2�. The next likely event is the failure of one of these, to form a break
triplet with N3 = 3 severely overloaded neighbors, of which one fails, and so on. The critical
event is thus the evolution of a growing \tight" r-cluster, with each added break being the failure
of one of the Nr severely overloaded �bers surrounding it. We write this as

Wn(�) � F (�)f1� [1� F (K1�)]
N1g

� f1� [1� F (K2�)]
N2g � � � f1� [1� F (Kn�1�)]

Nn�1g; (4)
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Figure 2: Comparison of the weakest link distribution predicted by the 2D cluster growth model with

the empirical weak link distributions Ŵ (x) obtained from Monte-Carlo simulations. Model 1 assumes

� =
p
4� and 
 = 0:5 for all �. In Model 2, we adjust the parameters � and 
 so as to get the best

�t with the simulated data. These values of � and 
 are listed in the bottom right corner. Weakest

link distributions corresponding to � = 0:5 are not shown because both Model 1 and Model 2 predict

distributions that are out of the range of this plot. Also omitted is the Model 1 line for � = 1 which
also lies outside the range of this plot.

where Kr is the stress concentration on the Nr most severely overloaded neighbors of a tight
r-cluster and is given by Eqn. 2. We introduce two parameters, � and 
, to account for the actual
number of �bers at high risk of failure. Let

Nr = �r
 (5)

be the number of severely overloaded neighbors around an r-cluster, where � > 0 and 0 < 
 � 1=2.
We �nd this structure for Nr to be essential in order that Wn(�) in Eqn. 4 agree with the form
of the simulated Ŵ (�) distribution especially for small �. Taking � =

p
4� � 3:55 and 
 = 1=2,

implies counting all the �bers on the cluster periphery to be at risk of failure. Model 1 lines in
Figure 2 correspond to this case and do not �t the simulated Ŵ (�) very well. However model 2
lines in which we vary � and 
 as functions of � �t the simulated Ŵ (�) much better. A closed
form approximation for W (�) is derived in [5].

2. Large Variability in Fiber Strength (small �)

When � is small corresponding to large variability in �ber strength, the cluster-driven breakdown
mechanism is dominated by a dispersed, strength-driven breakdown mechanism of the Æ-bundle.
This is clearly seen in the failure snapshots of a Æ-bundle for � = 1, as shown in Figure 3.

In the case of dispersed �ber failure in a Æ-bundle, the details of the �ber load-sharing model may
not be important provided that the model conserves load. Thus we consider behavior under the
equal load-sharing rule or ELS. ELS assumes that the stress concentration factor for each intact
�ber in an n-�ber Æ-bundle with j broken �bers is �n;j = n=(n � j). Applying a result due to
Smith [3] which sharpens one due to Daniels [4] to an ELS bundle of Weibull �bers we �nd that
the bundle strength distribution Gn(�) converges as n!1, to the normal form �((�� ��n)=s

�

n)
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Figure 3: Snapshots of the failure process in the median (among 500 simulations) Æ-bundle specimen

with 900 Weibull �bers of � = 1 under periodic boundary conditions. Open circles 
 denote intact

�bers,
N

denote broken �bers.

with asymptotic mean

��n = �Æ(�e)
�1=�

n
1 + 0:996n�2=3

�
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�1=3o
(6)

and asymptotic standard deviation

s�n = �Æn
�1=2��1=�

q
e�1=�(1� e�1=�): (7)

2a. Global/Local Model

Unlike in ELS, wherein material damage accrues globally, we speculate that in HVLLS there is a
�-dependent size scale within which damage accumulates in a dispersed manner and propagates
catastrophically from there. That is, failure initiates over ~m = n=~n bundles of ~n �bers in an
ELS-like manner within a localized region and propagates catastrophically from there resulting
in composite strength distribution

Gn(�) = 1� f1� �[(� � ��
~n)=s

�

~n)]g ~m; (8)

In Figure 4, for highly variable �bers with � = 1, 2, 3, and 5 we have plotted the strength
distribution of the smallest sized Æ-bundle (n1 � n1) to which weak-linked distributions of larger
bundles collapse. This smallest Æ-bundle size approximately corresponds to the critical cluster
size de�ned previously. We also show the distributions of larger bundles of size (n2 � n2) or
(n3� n3) weak-linked to the size (n1� n1). Note that as � decreases, these weak-linked distribu-
tions become increasingly Gaussian (indicated by the straightness of the strength distribution on
normal coordinates) and are better approximated by the ELS asymptotic distribution. Despite
the excellent agreement of the 900-�ber, weak-linked strength distribution with the 625-�ber,
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Figure 4: Comparison of �((� � ��n)=s
�

n) given by Daniel's asymptotic formula for ELS bundles with

simulated strength Gn(�) of an n = n1 � n1 HVLLS Æ-bundle. Also shown are empirical strength

distributions of larger Æ-bundles weak linked to the size n1 � n1 in agreement with those of the n1 � n1
Æ-bundle.

weak-linked distribution when � = 0:5, it turns out that they do not agree with a 2500-�ber,
weak-linked Æ-bundle strength distribution. This suggests that the smallest catastrophic failure
event of the bundle occurs over more than 625 or perhaps even 900 �bers.

CONCLUSIONS

In Eqn. 4, we give the weakest-link characteristic distribution functionW (�) for Æ-bundles. These
bundles are links in the chain-of-bundles model for the failure of 3D unidirectional composites.
For suÆciently large Weibull modulus �, say � > 4 in 3D composites, the strength distribution
of a composite of length L = mÆ and with n �bers is Hm;n(x) � 1 � (1 �W (x))mn. For � � 4,
however, we observe that the details of the load-sharing become increasingly unimportant, and
the Æ-bundle strength distribution for �xed n is not only increasingly Gaussian up to quite large
n but also converges to that for ELS whose analytical form is known. For �xed �, however, this
Gaussian nature is expected to persist only up to a Æ-bundle size of the order of the critical cluster
size. For composites beyond this critical size the distribution function for Æ-bundle strength is
that for a chain of Gaussian `patches' of ~n �bers in the Æ-bundle. Thus the composite can be
viewed as a weakest-link arrangement of m~n such Gaussian patches.
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