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ABSTRACT 
 
Charpy impact testing of a high strength low-alloyed (HSLA) steel has been performed by simultaneously 
recording two independent signals. The magnetic emission (ME) and potential drop (PD) techniques were 
used to determine critical crack initiation properties on standard V-notched and pre-cracked three-point 
bending specimens at room temperature. Both signals (ME and PD) were recorded and compared, with the 
purpose of more precise identification of critical fracture mechanics parameters determining the onset of 
ductile crack growth. Standard Charpy specimens made of HSLA steel, oriented perpendicular to rolling 
direction were tested by a modified instrumentation of the Charpy machine, which included the original 
magnetic emission, and the potential drop techniques. The strain gauges and emission probes, located on the 
hammer tup, measured the force, thus both the magnetic and electric potential drop signals were monitored 
and recorded as a function of time. The obtained results indicate good agreement between ME and PD 
techniques on evaluation of ductile crack growth initiation point. 
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INTRODUCTION 
 
The instrumentation of the Charpy testing machine by two independent techniques has been successful for 
dynamic fracture testing of the high strength micro-alloyed steel. The magnetic emission (ME) technique has 
been used for dynamic fracture testing by depicting the stable and unstable crack initiation [1], and has been 
applied for impact testing of certain types of steels, including railroad and reactor pressure vessel steels 
[2,3,4], as well as the HSLA steel [5]. In the case of ductile, or ductile/cleavage fracture, at temperatures 
well above nil-ductile, or at lower impact energies, it is sometimes difficult to distinguish the crack initiation 
event directly from the ME signal, and even the integrated ME signal sometimes has a slower rate of change, 
resulting in a plateau-like region without clear discontinuity. Alternatively, the potential drop method (PD) 
was also applied for the same purpose by recording the change in electrical resistance by drop in electric 
potential (PD) in the vicinity of the crack tip [6,7]. Results have also been obtained by applying this 



technique on a single specimen with a particular method for evaluating the R-curve for HSLA steels [8,9]. 
Stable crack initiation in this case is similarly depicted from the local minimum (or maximum) of the 
potential drop value and, as in the case of ME technique, may not give clear local extreme values when 
conditions of fracture change from brittle to ductile [5]. As expected, results obtained from testing specimens 
at several  loading rate (or impact velocity) have shown that the change of slope in the PD-t diagram can be 
used to evaluate critical crack behaviour, and if compared to similar changes of slope in the MF-t diagram, 
or vice versa, can eliminate doubts and provide a better understanding of both diagrams and measurement 
techniques. Some preliminary investigations have already been discussed [10]. 
 
Therefore, the two techniques were implemented in a Charpy instrumentation that gave independent and 
simultaneous records of ME and PD signals and the results were not only compared to check their validity, 
but to portrait the essence of superimposing all the benefits that characterize a certain testing technique. 
 
 
MATERIAL AND EXPERIMENT 
 
Micro-alloyed steels have a wide range of use in gas and oil pipelines, storage tanks, pressure vessels, 
vehicles, cranes, and metal structures in general. The tested steel is micro-alloyed with Nb and Ti and is 
obtained by controlled rolling and accelerated cooling, providing a ferrite-pearlite microstructure. With a 
yield stress of 411 MPa, the material is very ductile, even at lower temperatures, with a nil-ductility tempera-
ture below -80°C. The chemical composition (in wt. %) is shown in Table 1. 
 
 

TABLE 1 

CHEMICAL COMPOSITION IN WEIGHT PERCENT 

C Si Mn P S Al Cu Cr Ni Mo Nb Ti 
0.08 0.20 1.12 0.027 0.011 0.033 0.065 0.027 0.019 0.010 0.026 0.017 

 
The ferritic-pearlitic steel exhibits upper shelf values for ductile type of fracture at room temperature. This 
type of fracture is evident from load-time or load-displacement data. All the tests were performed at room 
temperature, owing to certain limitations of the PD technique [9]. The specimens were tested using initial 
energy levels in the range of Eo=26÷70 J, enabling different impact loading rates between vo=1.69÷2.75 m/s. 
The fracture toughness of the material is affected by the impact velocity, and in ductile materials, the 
fracture mechanism is controlled by the strain field. This property may increase or decrease, depending on 
the loading rate [9,11]. The introduced fatigue cracks, that also influence the fracture toughness, are within 
the range: a/W=0.47÷0.57. 
 
The standard V-notched Charpy specimens were cut from a 12 mm plate perpendicular to rolling direction. 
All specimens were pre-cracked by high frequency fatigue. Since potential drop measurement requires 
additional specimen preparation, specimens were prepared in the manner explained by Grabulov [9]. Fig. 1 
shows the prepared specimen on the anvil of the Charpy machine with the required instrumentation. Very 
thin wire connections for potential signal output were resistance-spot-welded to the specimen at asymmetric 
positions in respect to the notch (locations A, Fig. 1), being the optimal position. Apparently, the spot 
welding technique was performed by selecting inadequate welding parameters, resulting in loose contacts. 
The output wires were produced of steel, Ni, or Ni-Cr alloy, so some connections had to be re-connected in 
an unfavourable manner, by soldering. The heavier input Cu-wires originating from the DC power source 
were connected to the specimens by bolts (position III), securing a firm contact. The nominal input DC 
electric current of 30 A was required in order to produce output potential drop values ranging from several to 
at least 10 mV. This input DC value was selected as a minimum, and for some specimens it was increased up 
to 40 A, and even 50 A in order to amplify the weak output PD signal. Another limiting effect appeared from 
these wire connections as well. Being rather large and massive, they influenced the inertia characteristic of 
the specimens, and produced a problem that has yet to be solved – interrupted specimen fracture at higher 
loading rates, because of mutual contact and/or collision of these wire-connections with the inclined anvil 



wall surface when gradual specimen bending commences during impact. However, this appeared much later 
after crack initiation, and did not produce any unwanted effects within the investigated time window. 
The magnetic emission probe (ME) on the hammer tup recorded changes in the external magnetic field in the 
vicinity of the propagating crack, Fig. 1. The calibrated strain gauge on the tup acted as a load transducer. 
Sophisticated data acquisition equipment consisted of a DC signal amplifier and voltage supply, both tied to 
a TEKTRONIX TDS 420A digital oscilloscope. The transient recorder, with an interior circuit amplifier, 
was tied to the remaining channel on the oscilloscope. The load was measured by strain gauges and emission 
probes on the hammer, and both magnetic and electric potential drop signals were monitored and recorded in 
real sampling time intervals of 2, 4, 10 and 40 microseconds. All acquired data was then handled by PC 
spreadsheet procedures, including the evaluation of absorbed energy (U) and the critical dynamic J-integral. 
 
In order to check whether the ME instrumentation influenced PD measurements, and vice versa, the first two 
specimens were tested by applying techniques separately. The other specimens were tested simultaneously, 
with no record of signal interference, or other disturbing effects on the recorded signals. The high noise ratio 
in the PD signal is probably due to the poor grounding or it may have originated from nearby installations, 
but did not influence the character of the signal. This was minimized to a certain degree by toggling the 
input coupling impedance on the PD channel from 1 MΩ to 50 Ω, and also by analysing the diagrams and 
several multi-point linear trendlines in spreadsheet analyses. On the other hand, the ME signal retained good 
quality, having much less noise. 
 

 
 

Figure 1.  The Charpy pendulum instrumentation 
 
 
RESULTS AND DISCUSSION 
 
In the case of complete ductile fracture, the fracture toughness is calculated from the J-integral values under 
dynamic conditions (Jc

d), and is denoted by KId, whereas in the case of mixed fracture, especially when the 
ratio of elastic strain energy is not negligible, calculations should then include brittle and ductile fracture, 
separately (Jel + Jpl). In these tests fracture was generally ductile (Jel < 0.03· Jpl). The obtained results shown 
in Table 2 and in Figs. 2 and 3 clearly indicate a satisfying agreement between ME and PD tests on the 
evaluation of ductile crack growth initiation for this type of HSLA steel. 
 



The J-integral at the initiation of the stable crack growth under dynamic conditions (JI
d) is determined from 

Eq. (1), given below 
 

J
U

B W

m

pdI
n

i
d i

a
i=

−
= ��
�

2

� �
,    where  

,   with results from ME tests

,   with results from PD tests 

(1) 

 
The released energy – Um or Upd, is integrated from the load–displacement curve F(t)-f(t) by using 
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where the displacement at stable crack growth initiation fc(t) is determined at a time-to-stable crack initiation 
interval (ti) or by time-to-fracture (tF), whose determination is sometimes a difficult task, especially in the 
case of complete ductile fracture, when recorded diagrams, ME(t) and PD(t), do not always show a clear 
discontinuity. In these circumstances, it is necessary to analyze and compare all other diagrams as well: F(t), 
integrated-ME(t) (or MF(t)), or several multi-point linear or polynomial PD(t)-trendlines. This is a crucial 
moment when simultaneous implementation of two independent techniques is a benefit. In cases when 
diagrams acquired from a single technique cannot be distinguished, as an alternative, the other testing 
technique gave complementary diagrams. 
 
As an example of good agreement, specimen C11 results are shown on diagrams F(t)-MF(t) and F(t)-PD(t) 
in Figs. 2 and 3. Table 2 contains relevant data for some HSLA steel specimens, tested at 20°C. Columns 
include: pre-crack length–ao; impact load rate–vo; maximum impact load–Fmax; time to stable crack initiation 
–ti (or time-to-fracture–tF), and calculated relative time difference between ME and PD tests–∆(ti); released 
energy–U; calculated dynamic J-integral from ME and PD tests–Jcm

d, Jcpd
d, and the relative absolute 

difference between dynamic J-integrals calculated from ME and PD tests–|∆(Jc
d)|. 

 
 

Table 2 - Measured and calculated results from ME and PD impact tests 

ao bm vo Fmax ti , µs ∆(ti) U, J Jc
d, kJ· m-2 |∆(Jc

d)| Specimen 
id. mm mm m· s-1 kN ME PD % ME PD ME PD % 

A4 Ni * 5.60 7.03 1.69 4.59 920 940 -2.2 3.68 3.81 167.3 173.2 7.7 
B1 5.37 6.77 1.81 5.62 1160 1190 -2.6 4.59 4.84 198.2 208.9 14.1 

B3 Ni 5.70 7.65 1.82 4.96 540 500 7.4 3.56 3.27 165.4 152.0 5.5 
B14 5.30 6.83 1.82 5.84 610 530 13.1 4.78 4.08 203.2 173.6 4.5 

A7 NiCr 5.57 7.75 1.82 5.16 800 790 1.3 4.35 4.28 196.4 192.9 3.5 
C10 Ni 4.70 6.62 2.09 6.17 1160 1040 10.3 6.77 5.45 255.4 205.7 0.0 

C15 5.12 7.93 2.22 5.67 640 640 0.0 4.51 4.51 184.8 184.8 0.0 
C11 4.83 7.72 2.33 6.54 800 770 3.8 4.88 4.51 188.9 174.6 0.0 
B16 5.27 9.40 2.55 5.60 460 452 1.7 4.71 4.61 198.9 194.7 2.1 
B17 5.37 9.40 2.55 5.59 530 480 9.4 5.03 4.42 217.1 190.8 10.9 

A5 Ni 5.47 9.35 2.56 5.37 528 440 16.7 4.95 3.93 218.4 173.3 2.0 
A6 NiCr 5.38 9.37 2.56 5.14 460 458 0.4 4.39 4.36 190.1 189.1 0.5 

B20 5.30 9.17 2.56 5.43 640 684 -6.9 4.85 5.37 206.5 228.7 4.1 
B19 5.37 9.27 2.75 5.66 490 490 0.0 4.48 4.48 193.4 193.4 5.5 
C2 5.22 9.35 2.75 5.77 560 550 1.8 5.17 5.03 216.0 210.2 2.7 

    *) Some specimen identification also notes the material type of the PD output wire connections 
 
Some diagrams, F(t)-ME(t) or F(t)-PD(t), may not provide exact information about stable crack initiation 
time, and so they were averaged, Figs. 2 and 3. Usually, the change of slope in the F(t)-MF(t) diagram, and 
the local extreme point in the F(t)-PD(t) diagram (normal or average) is used instead (Fig. 3). This is also in 
agreement with the physical meaning of ME and MF quantities [2,3]. In the case of PD signal, stable crack 
initiation time is evaluated directly [9]. 
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Figure 2. F(t)-f(t) diagrams with MF and PD signals for specimen C11 (Eo=50 J; ao/W=0.48; PD input 50 A; insulated) 
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Figure 3. F(t) diagrams with MF and PD signals for specimen C11, indicating time-to-fracture (tF) 
 
 

The relative difference between critical values of dynamic J-integral is very low, with an absolute average 
|∆(Jc

d)|aver.=7.3%, and standard deviation |∆(Jc
d)|st.dev.=6.9%. Results are even better for the relative difference 

and standard deviation in crack initiation time: ∆(ti)aver.=3.6%, ∆(ti)st.dev.=6.5%. Indeed, both techniques were 
successful in evaluating crack initiation, although some major difficulties in performing the tests were: 
- stability of the specimen, because of the massive PD-input wire connections; 
- selection of the optimal PD-input electric current and voltage, because it affects the output signal quality; 
- specimen insulation from direct contact of the anvil and tup, in order to reduce amplitude noise probably 

developing from the power source and eddy currents; 
- special attention should be made to the quality of the acquisition device, since the adequate selection of the 

coupling impedance of the input signal and proper grounding on all electric devices decreases noise. 
 
The curves in Figs. 4 and 5 show J-integral vs. loading rate, and J-integral vs. initial crack length, respect-
fully. 
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Figure 4. Jc
d–v dependence for MF and PD tests Figure 5. Jc

d–ao dependence for MF and PD tests 
 
 
CONCLUSIONS 
 
Results shown in Figs. 4 and 5 have been statistically interpreted by power curves, although the result is the 
same if fitted by a linear, exponential, or logarithmic curve. This indicates an increasing tendency of the 
dynamic J-integral (Jc

d) with impact load rate (v), and a decreasing tendency for larger initial cracks (ao). 
Fitted power curves J=ƒ(vx), J=ƒ(ao

x), show very small difference in J-integral, indicating good agreement 
between ME and PD techniques on evaluation of ductile crack growth initiation. 
 
The ME power curve is constantly located above the PD power curve indicating slightly higher J-integral. In 
the average this is true, since PD evaluated time-to-fracture (ti) is usually shorter than its ME equivalent 
(Table 2). So, the released energies U(t) are smaller, and dynamic J-integral values are smaller too, Eq. (1). 
Multiple peaks in F(t)-ME(t) and F(t)-PD(t) diagrams are probably related to complex development of crack 
initiation and propagation. Analyses indicate that ME peaks follow PD peaks by a small delay, and both 
peaks usually precede F(t) peaks. This is still not clear, but the delay is probably related to specimen–strain 
gauge, or specimen–probe interaction, or hysteresis in electric and magnetic properties of the tested material. 
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