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ABSTRACT

This paper presents a new mode for dynamic fracturing of a brittle sphere subject to the "double impact
test”, in which the sphere is crushed dynamically between two flat rigid platens. The dynamic tensile stress
field in the specimen is calculated anaytically using a superposition gpproach by Vdanis[1]. The caculated
locd tendle fidd isimposed on vertical microcracks. The crack growth velocity is established in terms of
the gatic dress intengty factor, the dynamic fracture toughness, and the Rayleigh wave speed. The
dynamic strength corresponds to the crack growth velocity becoming unbounded. Double impact tests
done on plaster spheres were used to verify the present modd. Experimenta results show that the impact
energy required for fracturing in double impact test is about 150% of that required by the static counterpart
(i.e. the diametral compresson test).
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INTRODUCTION

The dynamic fragmentation of brittle spheres under impact loads has a wide range of engineering
goplications. It is dso one of the most fundamental problems in applied mechanics. It relates to
phenomena covering a wide range of length scales, from a large length scale of the collisond evolution of
aderiods to shorter length scde of the degradation of materids in process indudries, such as
pharmaceuticals, chemical, fertilizers and detergents. In civil engineering and rock mechanics, its application
has been in the mining indudtry, involving grinding, crushing, and impact comminution (Chau e 4. [2)).
Fragmentation of boulders during the impact phase of rockfal can dso be modeed by dynamic impact of
spheres (Chau et d. [3-5]).



Extensve experimentd and theoretica efforts have been made to estimate the required energy and force to
fracture a brittle solid into fragments with desirable sze didtribution. In the experimenta gpproach, one of
the most popular tests is the compression test of spheres, either staticdly or dynamicadly, between two flat
rigid platens. Under quas-dtatic loads, compression of spheres between two flat platens has been
proposed for testing the deformability of eastic maerids, hardness of ductile materids and crushing
srength of brittle materids. For example, the crushing of spheres between the flat platens can aso be used
to estimate the tengle strength of brittle spheres. A comprehensgive review is given by Chau et d. [2] and
by Darvel [6]. Although there are numerous experimenta studies, stress distribution within a sphere under
compresson between two rigid platens has not been studied comprehensvely. The most popular
theoretica modd is that proposed by Hiramatsu and Oka [7], which has been applied by various authors.
Chau et d. [2] dso provided a extenson of Hiramatsu-Oka solution to incorporating the Hertz contact
stress under compression. For the dynamic impact of spheres between two rigid platens, dthough a
informative crater andyss was dso suggested by Chau et d. [2]. However, due to mathematical
complexity, Chau et d. [2] did not consder the exact solution for the stress digtribution within spheres
under the double impact test. Therefore, the dynamic stress indde the sphere and its reationship to the find
fragmentation is not well understood.

Therefore, this paper outlines a new gpproach in which the Vaanis [1] superpostion principle for dynamic
problems and the dynamic crack growth results consdered by Freund [8] are combined to investigate the
problem of dynamic fragmentation in spheres. The andysis is dill on-going, only the essentid idea and
preliminary results will be reported.

VALANIS (1966) SUPERPOSITION PRINCIPLE

By applying the superpogition principle put forward by Vaanis [1], the problem of double impact test on
spheres can be decomposed into two associated problems: the dtatic problem and the free vibration
problem of a sphere.

Static Compression of Spheres

The datic solution for sphere can be generdized from that of Hiramatsu and Oka[7] (see Chau et dl. [2]).
In particular, by incorporating the Hertz contact stress, the dtatic problem of compresson of sphere
between two rigid platens are:
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where the unknown constants can be obtained from the boundary condition as
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Free Vibration Problems of Spheres
Instead of using wave potentia approach (Chau [11]), the Helmholtz decomposition theorem will be used
here to solve the following "reduced dynamics problem” (Achenbach [12]):
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In particular, we can assume the displacement vector as

V=R +N"y (6)
These scdar and vector potentids satisfy

For our axisymmetric problem, the second of these becomes
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By applying the traction free conditions on the spherical surface(i.e. s ,, =0,

following characteristic equationsis obtained:
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The full detalls of andyss and the numerical results will be presented in our forthcoming publication.
Nevertheess, a new approach has been outlined here to solve the problem of dynamic compression of

sphere.

DYNAMIC CRACK GROWTH IN SPHERE



The solution congdered in the previous section for dynamic tensile dong the center-line of the sphere can
be used to estimate the dynamic mode | stress intengity factor of a vertica microcrack as shown in Fig. 1
(Deng and Nemat-Nasser [13]; Freund [8]):
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where K, isthe dynamic stressintengty factor, s |, (t) isthe maximum hoop stress adong the center-line

of the axis of compression obtained in the previous section, | is the velocity of crack growth, a isthe half
Sze of the microcrack and c is the Rayleigh wave speed. It has been assumed that the microcrack is
redivey smal comparing to the Sze of the sphere such that local tengle field can be consdered as a far
fidd uniform stress. The speed of crack growth can be non-uniform. We should aso emphasized that the
speed of crack growth should not exceed the Rayleigh wave speed. It can be shown that the speed of
crack growth can be determined as (Deng and Nemat-Nasser, [13])
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where K ¢ isthe static mode | stress intengity factor and K. isthe dynamic fracture toughness.
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Figure 1. Dynamic growth of vertica microcrack in sphere under double impact test.

Chau et d. (2000) showed that the dynamic energy required for fragmentation can be estimated as 1.5
times of that required for static compression. Figure 2 was extracted from Chau et a. (2000).

FUTURE WORK TO BE DONE

In the case of double impact test, the present approach described needs to be combined with the dynamic
motion of the drop weight attached to the upper platen. The application of the contact force during the
dynamic impact needs to be evaluated by applying Newton second law to the faling rigid upper platen.
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Figure 2: Dynamic energy versus stetic energy required for fragmentation of sphere
(after Chau et d. [2])

CONCLUSION

The present paper summarizes a new theoretica gpproach to consder the dynamic stress within a sphere
under double dynamic test. The gpplication of this tensle stress to dynamic fracture in the sphere is dso
outlined. More daborated numericd andysis remains to be done and will be presented at a later time.
Neverthdess, the present framework should be very useful to invedtigate the dynamic fragmentation
problem of spheres under dynamic compressions.
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