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ABSTRACT  

This paper presents a new model for dynamic fracturing of a brittle sphere subject to the "double impact 
test", in which the sphere is crushed dynamically between two flat rigid platens.  The dynamic tensile stress 
field in the specimen is calculated analytically using a superposition approach by Valanis [1].  The calculated 
local tensile field is imposed on vertical microcracks.  The crack growth velocity is established in terms of 
the static stress intensity factor, the dynamic fracture toughness, and the Rayleigh wave speed.  The 
dynamic strength corresponds to the crack growth velocity becoming unbounded.  Double impact tests 
done on plaster spheres were used to verify the present model.  Experimental results show that the impact 
energy required for fracturing in double impact test is about 150% of that required by the static counterpart 
(i.e. the diametral compression test). 
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INTRODUCTION 
 
The dynamic fragmentation of brittle spheres under impact loads has a wide range of engineering 
applications.  It is also one of the most fundamental problems in applied mechanics.  It relates to 
phenomena covering a wide range of length scales, from a large length scale of the collisional evolution of 
asteriods to shorter length scale of the degradation of materials in process industries, such as 
pharmaceuticals, chemical, fertilizers and detergents.  In civil engineering and rock mechanics, its application 
has been in the mining industry, involving grinding, crushing, and impact comminution (Chau et al. [2]). 
Fragmentation of boulders during the impact phase of rockfall can also be modeled by dynamic impact of 
spheres (Chau et al. [3-5]).  
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Extensive experimental and theoretical efforts have been made to estimate the required energy and force to 
fracture a brittle solid into fragments with desirable size distribution.  In the experimental approach, one of 
the most popular tests is the compression test of spheres, either statically or dynamically, between two flat 
rigid platens.  Under quasi-static loads, compression of spheres between two flat platens has been 
proposed for testing the deformability of elastic materials, hardness of ductile materials and crushing 
strength of brittle materials.  For example, the crushing of spheres between the flat platens can also be used 
to estimate the tensile strength of brittle spheres.  A comprehensive review is given by Chau et al. [2] and 
by Darvell [6]. Although there are numerous experimental studies, stress distribution within a sphere under 
compression between two rigid platens has not been studied comprehensively.  The most popular 
theoretical model is that proposed by Hiramatsu and Oka [7], which has been applied by various authors.  
Chau et al. [2] also provided a extension of Hiramatsu-Oka solution to incorporating the Hertz contact 
stress under compression. For the dynamic impact of spheres between two rigid platens, although a 
informative crater analysis was also suggested by Chau et al. [2]. However, due to mathematical 
complexity, Chau et al. [2] did not consider the exact solution for the stress distribution within spheres 
under the double impact test. Therefore, the dynamic stress inside the sphere and its relationship to the final 
fragmentation is not well understood. 
 
Therefore, this paper outlines a new approach in which the Valanis [1] superposition principle for dynamic 
problems and the dynamic crack growth results considered by Freund [8] are combined to investigate the 
problem of dynamic fragmentation in spheres.  The analysis is still on-going, only the essential idea and 
preliminary results will be reported. 
 
VALANIS (1966) SUPERPOSITION PRINCIPLE 
 
By applying the superposition principle put forward by Valanis [1], the problem of double impact test on 
spheres can be decomposed into two associated problems: the static problem and the free vibration 
problem of a sphere.   
 
Static Compression of Spheres 
The static solution for sphere can be generalized from that of Hiramatsu and Oka [7] (see Chau et al. [2]).  
In particular, by incorporating the Hertz contact stress, the static problem of compression of sphere 
between two rigid platens are: 
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where the unknown constants can be obtained from the boundary condition as 
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Free Vibration Problems of Spheres 
Instead of using wave potential approach (Chau [11]), the Helmholtz decomposition theorem will be used 
here to solve the following "reduced dynamics problem" (Achenbach [12]): 
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In particular, we can assume the displacement vector as 
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These scalar and vector potentials satisfy 
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For our axisymmetric problem, the second of these becomes 
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The general solutions for � and � are: 
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Substitution of these solutions to the displacement-strain and stress-strain relations leads to 
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By applying the traction free conditions on the spherical surface (i.e. arrrr ==s=s q on 0,0 ), the 

following characteristic equations is obtained:   
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The full details of analysis and the numerical results will be presented in our forthcoming publication.  
Nevertheless, a new approach has been outlined here to solve the problem of dynamic compression of 
sphere. 
 
 
DYNAMIC CRACK GROWTH IN SPHERE 
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The solution considered in the previous section for dynamic tensile along the center-line of the sphere can 
be used to estimate the dynamic mode I stress intensity factor of a vertical microcrack as shown in Fig. 1 
(Deng and Nemat-Nasser [13]; Freund [8]): 
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where IDK  is the dynamic stress intensity factor, )(thoops  is the maximum hoop stress along the center-line 

of the axis of compression obtained in the previous section, l&  is the velocity of crack growth, a is the half 
size of the microcrack and Rc  is the Rayleigh wave speed.  It has been assumed that the microcrack is 
relatively small comparing to the size of the sphere such that local tensile field can be considered as a far 
field uniform stress. The speed of crack growth can be non-uniform. We should also emphasized that the 
speed of crack growth should not exceed the Rayleigh wave speed. It can be shown that the speed of 
crack growth can be determined as (Deng and Nemat-Nasser, [13]) 
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where ISK  is the static mode I stress intensity factor and ICK  is the dynamic fracture toughness.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Dynamic growth of vertical microcrack in sphere under double impact test. 
 
Chau et al. (2000) showed that the dynamic energy required for fragmentation can be estimated as 1.5 
times of that required for static compression.  Figure 2 was extracted from Chau et al. (2000).  
 
 
FUTURE WORK TO BE DONE 
 
In the case of double impact test, the present approach described needs to be combined with the dynamic 
motion of the drop weight attached to the upper platen.  The application of the contact force during the 
dynamic impact needs to be evaluated by applying Newton second law to the falling rigid upper platen.   
 

�(t) 

P(t) 



 6

 

 
Figure 2: Dynamic energy versus static energy required for fragmentation of sphere 

 (after Chau et al. [2]) 
 
CONCLUSION 
 
The present paper summarizes a new theoretical approach to consider the dynamic stress within a sphere 
under double dynamic test.  The application of this tensile stress to dynamic fracture in the sphere is also 
outlined.  More elaborated numerical analysis remains to be done and will be presented at a later time.  
Nevertheless, the present framework should be very useful to investigate the dynamic fragmentation 
problem of spheres under dynamic compressions. 
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