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ABSTRACT

Ductile crack initiation and growth is investigated by applying a three-dimensional finite element (FE)
analysis in conjunction with a nonlinear damage model. This numerical procedure is formally restricted by
the so—called ”loss of ellipticity” due to a type change of the differential equations. A time-independent
finite strain formulation is applied based on a multiplicative decomposition of the deformation gradient in
an elastic and a plastic part leading to an efficient integration scheme. This formulation can be used as a
general interface for the implementation of different constitutive models describing ”damage” by a scalar
quantity in an isotropic manner.

The general problem of describing on the microlevel strongly inhomogenious material behaviour by discretiza-
tion methods using macroscopic mechanical field quantities, which are microscopic averages, is discussed.
Often, typical discretization length scales fall obviously below the intrinsic material length scales, making
the sense of the averaging structure of the applied numerical method doubtful.
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INTRODUCTION

During the last years applications of models based on continuum damage mechanics (CDM) to ductile frac-
ture mechanics become very popular. The computational evaluation and simulation of damage occurance
by different models implemented in the framework of the FEM seems to be very promising, since lots of
contributions have followed the first, fundamental publications such as [5], [11] or [7]. It is the common
belief that the application of the FE method considering nonlinearities due to advanced constitutive damage
models and finite deformations may be capable of simulating classical fracture specimens and test condi-
tions. A well-known disadvantage in the numerical treatment of solid mechanics problems, where softening
material behavior occurs, is the so—called mesh—dependence of numerical results. In a considerable number
of investigations different methods have been proposed to overcome the mesh—dependence of finite element
results. The common idea is to introduce a characteristic or internal length (scale) into the constitutive
model or its evaluation, see [2], [3] or [4] and references therein, where a summary of different regularization
techniques is outlined.

In this article some limitations and restrictions of ductile damage mechanics analysis in the scope of the
finite element method and its nonlinear solution procedures are precisely pointed out at the example of a CT
specimen. In order to resolve the highly nonlinear effects of stress and strain concentration occuring near
notches, crack tips or due to shear band localization, the numerical discretization in these regions usually is
refined without respecting minimal length scales limited by inhomogenities on the microscale of the material.
Typical physically based length scales of ductile materials such as structural steel or aluminium alloys are
in the magnitude of about 50pm — 200pm. But very often length scales resulting from FE discretizations of
detailed simulations of damage and crack initiation and growth problems fall below these "natural” barriers.
As a consequence, the basic assumptions of continuum mechanics such as continuity of mechanical quantities
on the macroscale are violated definitely and the numerical results are highly questionable.

In this study 20-noded brick 3D elements are used with quadratic shape functions along the element edges.
As a constitutive model, the ductile damage model of [7] is used. An advantage of this model is the de-
scription of material softening behavior due to damage by the influence of solely three material parameters.
The second advantage is related to the numerical implementation of the constitutive law by means of an
implicit integration scheme. The type of the constitutive equations leads to symmetric tangent material
moduli, which is advantageous in computing and storing the matrix expressions. Simultaneously a locali-
zation analysis is performed during the iteration on every integration point by evaluation of the so called
localization or acoustic tensor for all possible directions of localization in three dimensions. The fundamental
derivation of the acoustic tensor in the case of finite strains is described in [10]. An essential result of this
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load, but is restricted until the situation where loss of ellipticity occurs. The investigation is illustrated by
a 3D discretization of a CT specimen considering ROUSSELIERs damage model.

3D FINITE ELEMENT FORMULATION

Starting point of any finite element discretization is the weak form of equilibrium g(u,du) formulated in
the current configuration, where u is the displacement and t; are the prescribed tractions acting on the
loaded boundary 9B, of the body in the current configuration B. Linearization with respect to the current
deformation state and rearrangement leads (with dv = J dV') to the following representation of the element
stiffness

Dgelmt(ﬁ,éu) — /J (Ao + gradAu - o) : grad du qvemt. (1)
By

where J = det F and By denotes the reference configuration. For further explanations on the implementation
of the consistent linearization of the used algorithm see [9]. The discretization chosen in this paper is based
on a 20-node—displacement element formulation with shape functions NV;, (i = 1,2, ...,20), so that quadratic
functions describe the element edges. As in [6], a 2 X 2 x 2 integration scheme is used, which means
an underintegration with respect to the quadratic shape functions N;. It shall be pointed out that no
hourglassing modes were detected like in the case of an 8node—displacement element formulation and a
1 x 1 x 1 integration scheme, see [2].

FINITE STRAIN PLASTICITY AND DAMAGE MODEL

Finite strain plasticity

At least in the crack tip region of elastic—plastic solids under sufficiently high load, finite deformations occur
where the plastic part of the strains usually is large compared with the elastic part. The framework of
multiplicative elastoplasticity is used, which is widely accepted in plasticity.. Its kinematic key assumption
is the multiplicative split of the deformation gradient F = F;-F;; into an elastic and a plastic part, providing
the basis of a geometrically exact theory and avoiding linearization of any measure of deformation. As a
further advantage, fast and numerically stable iterative algorithms, proposed and described in [9], can be
used. In the following, only a brief summary of the algorithm in the context of a FE-implementation is
given. The essential aspect of the multiplicative decomposition is the resulting additive structure of the
current logarithmic principal strains within the return mapping scheme as €% = €' — AeP!. Here, ¢; = In )\;
(i = 1,2,3) and A? are the eigenvalues of an elastic trial state, described by the left CAUCHY-GREEN
tensor b?l" The elastic strains €® are defined by HOOKE’s law and the plastic strain corrector AeP! can be
derived by the normality rule of plastic flow. The elastic left CAUCHY-GREEN tensor can be specified with
the multiplicative decomposition as b, = Fg; - F;S =F. C;ll . FT | which clearly shows the ”connection”
between the elastic and plastic deformation measure by the occurance of the plastic right CAUCHY—GREEN
tensor C,; = Fgl - Fy. By means of the relative deformation gradient (see [9]) f = 0x/0x,_1 = F-F, !,
which relates the current configuration x to the configuration belonging to the previous time step at ¢, 1, an
elastic trial-state bZ =f-b,_1-f’ is calculated for the current configuration with frozen internal variables
at state t,_1. If the condition ® < 0 (see Eqn. (2)) is fulfilled by the current stress state 7, this state is
possible and it is the solution. If, on the other hand, ® < 0 is violated by the trial-state, the trial stresses
must be projected back on the yield surface ® = 0 in an additional step, often called ”return mapping”.

Rousselier Damage Model

Following the ideas of [1] the stress and strain tensors are decomposed into scalar quantities, which is of
advantage for the numerical implementation. Thus, the KIRCHHOFF stress tensor 7 is written as the weighted
CAUCHY stress tensor as 7 = J o = —pl +2/3¢'n", where J := det F = dv/dV = po/p and p = —7;;0;;/3
defines the hydrostatic pressure, ¢" = /3/2t;t;; is the equivalent stress and t¢;; = 7;; + pd;; are the
components of the stress deviator. In this notation, an additional important quantity is the normalized
stress deviator n” = 3/(2¢")t. The second order unit tensor 1 is defined as the KRONECKER symbol by
its components 4;; in the cartesian frame. In an analogous way the plastic strain rate can be written as
AePl = %Aepl + Agyn”, where Ae, and Aeg, describe scalar rate quantities which are defined below. The
constitutive model used in this study is the damage model proposed by [7]. Here, taking ductile damage
processes into account, the yield function is written as

o 1/N
®=q" -0y [ “E+1 +B(B)D exp(—ﬂ) =0, (2)
oo g1

~ ~
-~

o*




vl ualllagc \DULUCLlllls} iV AUVl U.y vilv iLuldlivuviuvil .LI\/\J} alilii il CAPULlCllblal aDDulllelULl- 4 Ul lJlLCJ.lllUJ.C’ 44 A0
the YOUNG modulus, g is the initial yield stress, NV is the material hardening exponent, and D and o3
are damage material parameters. The function B(f) is the conjugate force to the damage parameter 3,
defined by B(8) = o1 foexp(8)/[1 — fo+ foexp(B)]. Here, the initial void volume fraction fy is the third
damage—depending material parameter used in this constitutive set of equations. The macroscopic plastic
strain rate €”! is determined by the classical associated flow rule

T

éplzxaﬁzx{aﬁ%ﬁ—@@}. (3)
or dq™ Ot  Op Ot

Note that é” coincides with the plastic increment Ae? for the algorithmic setting written in the principal
axes. The last bracket on the right hand side of (3) shows a further advantage of this formulation following
[1], since it is easy to determine the derivatives of ® with respect to the scalar quantities ¢” and p. It can
be seen with (3) that

. 0P . 00
AEP = —Aa—p and AEq = Aa—q'r . (4)

These two equations allow the algebraic elimination of A\. Thus, the increment of the plastic strain can
be expressed by the two scalar quantities Ae, and Agy. Then the equivalent plastic strain sg,l]v can be
incremented directly by Aeg,. The evolution equation for the damage parameter 8 is given by AS =
Aeg,D exp(—o%), which is obviously dependent on the deviatoric part of the strain rate Ae, and the actual
hydrostatic pressure p. With this the whole set of the constitutive equations is completed. The evaluation of
the material model on the local level of integration points for a given load is realized by an implicit EULER
backward integration scheme for the unknowns Ag,, Ae, and AB. The exact linearization of the set of
equations follows the description in [1]. The variational expression

PR . on"
or=C: | 0€" — §5A8p1 — 0Agm’ — quﬁ 0T (5)
leads, after some extended algebraic manipulations as described in [1], to the expressions 6Ae, and dAg,

and finally to the material modulus for the implicit integration procedure at the end of the considered time
interval [¢,t + At].

LOCALIZATION ANALYSIS

Acoustic Tensor

A steady evaluation of the ”spatial localization tensor” Q is performed on every integration point during
the iteration to check for material stability. The spatial localization tensor Q = n - D - n is the contraction
of the current fourth order material tensor ID by the spatial surface unit normal vector n with respect to
its second and fourth index. This derivation is introduced in [10] motivated by the assumption of spatially
continuous incremental equilibrium across an arbitrary band of discontinuity, which implies that the nominal

[e] o
traction rate inside and outside the band is the same: t(x°%) = t(x*?"4). With the definition of the nominal

traction rate i): =J 7. n, the nominal rate of the KIRCHHOFF stress tensor 7 can be related to the spatial
velocity gradient 1 := F-F ! via 7 = D : L. These relations become more evident by reformulation of the
material rate of the first PIOLA-KIRCHHOFF stress tensor P in terms of the KIRCHHOFF stress tensor T into
P=F'! - 7-F'.1.7 Relating P to the rate of the deformation gradient F via the tangent map DT,
yields

t=+-1.7=F.-D': F, (6)

which coincidences with the known frame—invariant (objective) OLDROYD rate T by =1 + 7 1%, Note
that the derivations and the argumentation in [8] — depicted for the case of small strains — about loss
of material stability by real or imaginary wave speeds very illustratively denote the term ”acoustic tensor”
for the double contraction Q = n - DD - n of the material tensor ID by the normal vector n indicating a
possible wave propagation direction. The condition for getting reasonable numerical results is the positive
definiteness of the second order tensor Q, which belongs to a positive value of the determinant ¢ = det [Q].

Numerical treatment
During the numerical analysis ¢ = det [Q] = det [n - ID - n] has to be evaluated for all possible directions n
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To detect a possible critical direction, where ¢ may vanish, one has to compute ¢ = det [Q] — min for a
set {a,}. This minimization procedure is synonymous to the evaluation of Vg(a, ) = 0, which can be
obtained by a classical NEWTON iteration scheme through

92q 8%q - 9q
07 _ |« B da2 dadp . da (7)
I5} B d%q 9% 9q |
k+1 k 9008 B2 B

and suitable initial conditions, e.g. [o, 8§ = [0.1,0.1]§, where k indicates the iteration loop number. Be-
cause of the large number of operations, the expressions of the related FORTRAN code are obtained by the
algebraic manipulation program MATHEMATICA exploiting some advanced methods for code generation.

EXAMPLE AND RESULTS

Model of a CT specimen
As example, a three-dimensional model of a CT specimen discretized by 20—node solid elements as shown
in Fig. 1(1) is examined. Due to symmetry, just a quarter of the structure is modeled, for length dimensions
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Figure 1: Model of CT specimen and typical load—deflection curve for different discretizations

see Tab. 1. The loading is applied by a prescribed displacement ug (by 0.01 mm/step) of the nodes lying on
the marked line, see Fig. 1(1). The chosen discretization is characterized by the typical element edge length
e in front of the crack tip. In this investigation the element edge lengths e = 0.50 mm and e = 0.25 mm
are used. Additionally the typical mesh sensitive results for a classical, local FE simulation using different
discretizations are plotted as load-deflection curve in Fig. 1(2), where obviously the dependence of the re-
action force on the finite element mesh can be seen. The set of material parameters used is shown in Tab.
1, where the first four parameters can be obtained by simple tensile tests, and D, o1 and fy are responsible
for the damage representation of the constitutive model.

Table 1: MATERIAL PARAMETERS

EMPa|| v |69 [MPa] | N | D |0y [MPa] | f, | 7 [mm] |/ [mm] | b [mm| | A [mm]
210000 | 0.2 460 7 3 300 0.01 6 ) 3 )

Results

A result for the load—displacement curves for different discretizations is plotted in Fig. 1(2) and can also
be found in [3]. The mesh sensitivity is obvious, if no additional regularization technique is applied. In the
following, we concentrate on computations resulting from the evaluation of the localization tensor Q and
its determinant. The representation of the results is focussed on observations of the FE-integration point
being located directly in front of the crack tip in the center of the specimen, which is the highest loaded
point with the most increased damage parameter. Fig. 2 shows the normalized determinant of Q vs. the two
spatial angles o and 8 parameterizing the normal vector n in each case by 20 steps (ROUSSELIER parameter
set of Tab. 1 and e = 0.50 mm). Displayed is the situation for load steps 2, 4 and 8 (ur = 0.02,0.04,0.08
mm), which represents directly the situation before the onset of localization (¢ — 0). Obviously one can
recognize the decrease of ¢/|Q11Q22Q33| during load steps 2-8.
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Figure 2: Evaluation of the acoustic tensor

Because of the numerical costs determining these quantities during the iteration, we apply a NEWTON it-
eration scheme following Eqn. (7) for finding the minimum of these surfaces. For the integration point of
interest, Fig. 3(1) shows the value of det [Q] vs. 30 load steps for two different discretizations with e = 0.50
mm and e = (.25 mm and ROUSSELIER material, respectively. Additionally, the situation for a standard
(non damaging) VON MISES material with the same power-hardening law ¢* and e = 0.50 mm is plotted.
As expected, for the vVON MISES material, the values of g decrease rapidly during the load incrementation
over 30 steps, but never reach ¢ = 0 indicating a possible localization.

In contrast, the curves for the ROUSSELIER damage material representation show precisely a zero—crossing
and thus a localization occurance. Again, the mesh sensitivity is obvious through the results for e = 0.25 mm
at load step 4, while the discretization with e = 0.50 mm reaches zero at load level 9. In Fig. 3(2) the equiv-
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Figure 3: Determinant of acoustic tensor Q and equivalent stress in front of the crack tip

alent stress of the integration point in front of the crack tip is plotted vs. the applied load steps for the
ROUSSELIER material and e = 0.50 mm. Note that the equivalent stress at the critical load level 9 (ur = 0.09
mm) appears in the decreasing part of the load curve obviously after reaching the peak load.

Fig. 4 depicts the contours of integration points, where the determinant of the acoustic tensor reaches zero
for the load steps 10, 20 and 30 in front of the crack tip. The contour lines in crack propagation direction are
plotted over the discretized width b of the specimen using e = 0.50 mm and the ROUSSELIER material set of
Tab. 1 demonstrating local loss of ellipticity in front of the crack tip during the computation. It should be
emphasized, that the contour lines ¢ = 0 must not be mixed up with the contour lines of lost load carrying
capacity (crack growth) defined by a critical damage parameter. These crack growth contours follow the
g = 0 contours far behind (at higher load steps), indicating that they are determined in inadmissible situ-
ations. These results show impressingly the close limits of the continuum damage mechanics using the FE
method without additional regularization avoiding a type change of the leading differential equation. Mesh
refinements resulting in the typical mesh sizes in the magnitude of the intrinsic material length scales can
not represent the real, potentially inhomogenious, material structure on the microlevel.
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Figure 4: Contours of integration points on the ligament reaching ¢ = 0 for load steps 10, 20, 30 using the
ROUSSELIER material set and e = 0.50 mm

SUMMARY

In this contribution we present a study on ductile damage analysis by a 3D simulation of CT specimen using
the ROUSSELIER damage model combined with a 3—dimensional finite element formulation based on 20—
node-solid elements. The main attention is put to the limitations of the finite element method discretizing
mechanical field equations by piecewise continuous functions, which are used to represent inhomogenious
constituents of material on the microscale.

Typical FE analyses, resolving the situations in front of crack tips or in shear band regions as detailed
as possible, are known to produce very mesh sensitive results because of the changing type of the basic
differential equations. This ”loss of ellipticity” is checked by a steady evaluation of the acoustic tensor and
a stop of the overall computation reaching such a point of stability. It is worth mentioning that this critical
situation is reached very early during the nonlinear iteration process, so that the subsequently determined
numerical results become questionable, if no method of regularization is applied.
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