
ORAL/POSTER REFERENCE: ICF 100177OR 
 
 
 
 
 
 

DIRECT EVALUATION OF ACCURATE SIF WITH PUM 
 
 

B.L. Karihaloo a and Q.Z. Xiao a, b 
 

a School of Engineering, Cardiff University, Cardiff, CF24 3TB,UK 
b Department of Modern Mechanics, University of Science and Technology of 

China, Hefei, 230026, China 
 
 
 

ABSTRACT 
 
An alternative approach to the extended finite element method (XFEM) and generalised finite element 
method (GFEM) is introduced to enrich the finite element approximation of the crack tip node as well as its 
surrounding nodes. These nodes are enriched with not only the first term but also the higher order terms of 
the crack tip asymptotic field using a partition of unity method (PUM). The first term only is used in the 
XFEM to enrich the surrounding nodes, and in the GFEM to enrich the crack tip node. This approach also 
differs from the XFEM in that the additional coefficients of the enriched nodes are the actual coefficients of 
the crack tip asymptotic field. Numerical results show that together with a reduced quadrature rule, the 
current approach predicts accurate stress intensity factors directly after constraining the enriched nodes 
properly but without extra post-processing. 
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INTRODUCTION 
 
For crack problems, Tong and Pian [1] have shown that, in general, the convergence rate for the finite 
element (FE) method is dominated by the nature of the solution near the point of singularity, and the error 
from the elements immediately adjacent to the point is of the same order as that of the remainder of the 
elements. Hence neither the use of the regular high accuracy elements using high order polynomials as 
interpolation functions nor finer elements improve the accuracy efficiently. In order to improve the 
convergence rate of the FE solution, various singular elements have been introduced to account for the 
required crack tip singularity [2-4]. Recently, Belytschko et al. [5-7] proposed the extended finite element 
method (XFEM) for modelling cracks in the FE framework, which seems promising for fracture problems 
since it avoids using a mesh conforming with the crack as is the case with the traditional FEM. By using 
XFEM, a standard FE mesh for the problem is first created without accounting for the crack. A crack is then 
represented independently of the mesh by enriching the standard displacement approximation with both 
discontinuous displacement fields along the crack face and the singular asymptotic fields at nodes 
surrounding the crack tip through a partition of unity method (PUM). The additional coefficients at each 
enriched node are independent. Strouboulis et al. [8] also discussed the possibility of enriching the crack tip 
node with the asymptotic field in their generalised finite element method (GFEM). The difference between 
the XFEM and the GFEM is that the former enriches the surrounding nodes instead of the crack tip, while 
the latter only enriches the crack tip. The weakness of most singular elements as well as the XFEM and the 



GFEM is that they predict accurate global displacements but not accurate SIFs at the crack tip. The SIF has 
to be evaluated with the help of energy related parameters such as the J-integral by a post-processing 
procedure. This limits the application of singular elements, XFEM or GFEM in fracture simulation.  
 
In order to determine the SIF directly without extra post-processing, an alternative approach is introduced to 
enrich the FE approximation of the crack tip node as well as its surrounding nodes with not only the first 
term but also the higher order terms of the crack tip asymptotic field using the PUM. It differs from the 
XFEM in that the enriched fields are the actual crack tip asymptotic fields and the additional coefficients of 
the enriched nodes are the relevant coefficients of this expansion. Sensitivity to the quadrature rule and 
number of retained terms, as well as the effect of constraining the enriched nodes, are studied. The computed 
SIFs of typical cracked specimens will be validated with results available in the literature.  
 
 
ENRICHING THE CRACK TIP FE APPROXIMATION USING PUM 
 
For our purposes and without loss of generality, we consider only Mode I crack problems. The truncated N 
terms of the displacement expansions near the tip of a crack can be written as [3, 4] 
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where (r, �) are the polar coordinates with the origin at the crack tip, and the angular functions 
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The coefficient of the first term is related to the mode I SIF IK  as  π21 IKa = . 
 
In order to use higher order terms, r is normalised as 
 

mrrr =  (4) 
 
where rm is a characteristic length of the elements with enriched nodes, e.g., the length of a side or of the 
diagonal of a rectangular element.  Taking into account of (4), displacements (1) become 
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with the coefficients being related as 
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For an element near a crack tip (cf. Figure 1), the approximation of displacements enriched with the 
truncated crack tip asymptotic fields (5) using the PUM can be written as 
 

n
IEj Nn n

n
j

Ii i

i
i

IEj a

a
j

Ii i

i
ih

h

a
rf

rf
x

v

u
x

rv

ru
x

v

u
x

xv

xu
 

),(

),(
)()(

),(

),(
)()(

)(

)(

2

1∑ ∑∑∑∑
∩∈ ∈∈∩∈∈ 






+







=







+







=













θ
θ

φφ
θ
θ

φφ  (7) 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where I is the node set of an element, e.g., for elements i and j in Figure 1, I= { }4321 iiii  and 

{ }4321 jjjj , respectively. E is the set of the enriched nodes of the element, E= { }4321 iiii  for 

element i, and E= { }21 jj  for element j. Approximation (7) may be simplified in actual cases. For an 
element which includes the crack tip, e.g. element i in Figure 1, I=E. Noting the consistency condition 
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While for an element which does not include the crack tip, e.g. element j, we have 
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If all enriched nodes are constrained, i.e., the nodal displacements are set to be zero, the displacement 
approximation for elements including the crack tip (e.g., shaded elements in Figure 1) become the truncated 
crack tip asymptotic field. The outer ring of elements surrounding these elements actually match the crack 
tip field with the standard FE approximation. However, the current approach differs from all existing 
singular elements in that higher order terms have been taken into account.  
 
From (7), we have the strain vector 
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where q  is the general nodal displacement vector, and { }N

T aaaa ′′′=′ L21 . The additional matrix 
 

[ ]Nn BBBBB LL21=  (11) 
 
with its nth element or column being 
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Figure 1: A schematic picture of the elements and enriched 
nodes near a crack tip 
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With the use of the enriched strain-displacement relation (10), the element stiffness matrix can be formed in 
the general way. 
 
 
NUMERICAL EXAMPLES 
 
A single edge crack in a finite rectangular plate (SEC) shown in Figure 2 is chosen first as a benchmark 
problem. The coefficient of the singular term 1a  computed by the present method will be compared with the 
reference KI solution given in [9] 
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which is claimed to be accurate to within 1� for 1≥wh  and 6.0≤wc . An eccentric through crack in a 
finite rectangular plate (Figure 3) is analysed next to show the potential of the present method in treating 
multiple crack tips. For both specimens, h=w=1 are used. As the coefficients in the asymptotic expansions 
(1) are independent of the material constants, in the computations Young's modulus E is set at 1, and 
Poisson's ratio � at 0.25. The load (Figures 2 and 3) is chosen as � =1 with its units consistent with that of E. 
A state of plane stress is considered and the thickness is assumed to be unity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Only the upper half of the plate in Figure 2 or 3 is considered and divided into 10�10=100 regular elements 
because of symmetry. The bilinear 4-node isoparametric element is used together with a 2�2 Gauss 

quadrature. The normal nodal displacements are fixed on the axis of symmetry. rm=0.1 2 is used throughout 
the computations. 
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Figure 2: A single edge crack in 

a finite rectangular plate 

Figure 3: An eccentric through crack 

in a finite rectangular plate 



For the SEC with c/w=0.3, the computed a1 with N=42 and various ngaus, order of Gauss quadrature, is 
plotted in Figure 4. The results obtained with or without constraining the enriched nodes are included. 
Obviously, results obtained by constraining the enriched nodes and a reduced integration (ngaus=2) are the 
most accurate. Quadratures higher than order three give almost identical results. Hence in the following we 
will constrain the enriched nodes. But the quadrature rule will be tested extensively.  

 

 
 
 
Again for the SEC with c/w=0.3, the convergence of the computed a1 with an increase in the retained terms 
N of various integration orders is studied and reported in Figure 5. It is clear that the second order Gauss 
integration again gives the most accurate results. Using only the first term or a few higher order terms 
improves the accuracy but not by much. Desirable accuracy has been maintained by using 40 terms. 
 
By retaining 40-50 terms (a deeper crack needs more terms) and choosing ngaus=2, the computed a1 for 
various crack lengths is listed in Table 1 and compared with the solution given by (13). It is clear that very 
high accuracy (about 1%) has been obtained by the present method. 
 

Figure 4: Computed a1 for various quadrature orders with 
different constraints on the enriched nodes 
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Figure 5: Convergence of the computed a1 with an increase in the 
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TABLE 1 
COMPUTED a1 FOR VARIOUS CRACK LENGTHS FOR THE SEC 

 
c/w 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Computed a1 0.433 0.648 0.936 1.404 2.165 3.554 5.668 
(13) 0.434 0.645 0.945 1.421 2.219 3.555 5.731 

 
The eccentric crack in Figure 3 can be easily treated by the present method. d=0.2, c=0.4 and ngaus=2 are 
used and 43 terms are retained. The computed a1 for the left and right tips are 0.453 and 0.337, respectively. 
 
The stiffness matrix of an enriched element as well as the system is generally rank deficient. This problem 
cannot be overcome completely by accurate integration. However, this kind of rank deficiency can be taken 
care of numerically [8]. In our computations, we used the program given in [10].  
 
 
DISCUSSION AND CONCLUSIONS 
 
By enriching the FE approximation of the crack tip node as well as its surrounding nodes with not only the 
first term but also the higher order terms of the crack tip asymptotic field, accurate SIFs are determined 
directly without extra post-processing. To maintain high accuracy, 40-50 terms in the crack tip asymptotic 
field should be retained, a reduced quadrature (2�2 Gauss quadrature used in this paper) is desirable, and the 
enriched nodes should be constrained properly.  
 
Since the general bilinear interpolation cannot improve the approximation of the crack tip field, constraining 
the enriched nodes improves the condition of rank deficiency and thus the accuracy of the results.  
 
2�2 Gauss quadrature provides the most accurate results because the truncation errors are mainly 
compensated by the higher order terms, while using accurate integration the errors are averaged among all 
terms. 
 
Although only Mode I cracks are reported, it is straightforward to employ this method to more complicated 
crack configurations and/or loading conditions, especially together with the method for incorporating 
discontinuous displacement fields across the crack face away from the crack tip [5-7]. 
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