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ABSTRACT

An dternative approach to the extended finite dement method (XFEM) and generdised finite eement
method (GFEM) is introduced to enrich the finite dement gpproximation of the crack tip node as well as its
surrounding nodes. These nodes are enriched with not only the first term but dso the higher order terms of
the crack tip asymptotic fiedld usng a partition of unity method (PUM). The firg term only is used in the
XFEM to enrich the surrounding nodes, ad in the GFEM to enrich the crack tip node. This gpproach aso
differs from the XFEM in that the additiond coefficients of the enriched nodes are the actua coefficients of
the crack tip asymptotic field. Numerical results show that together with a reduced quadrature rule, the
current gpproach predicts accurate dtress intengty factors directly after congtraining the enriched nodes
properly but without extra post- processing.
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INTRODUCTION

For crack problems, Tong and Fan [1] have shown that, in generd, the convergence rate for the finite
eement (FE) method is dominated by the nature of the solution near the point of singularity, and the error
from the dements immediately adjacent to the point is of the same order as that of the remainder of the
dements. Hence neather the use of the regular high accuracy dements usng high order polynomids as
interpolation functions nor finer dements improve the accuracy efficiently. In order to improve the
convergence rate of the FE solution, various sngular dements have been introduced to account for the
required crack tip dngularity [2-4]. Recently, Beytschko et d. [5-7] proposed the extended finite eement
method (XFEM) for modelling cracks in the FE framework, which seems promising for fracture problems
snce it avoids usng a mesh conforming with the crack as is the case with the traditiond FEM. By usng
XFEM, a standard FE mesh for the problem is firs aeated without accounting for the crack. A crack is then
represented independently of the mesh by enriching the standard displacement agpproximation with both
discontinuous displacement fields dong the crack face and the sngular asymptotic fiedds a nodes
surrounding the crack tip through a partition of unity method (PUM). The additiond coefficients a each
enriched node are independent. Strouboulis et d. [8] dso discussed the posshbility of enriching the crack tip
node with the asymptotic fied in ther generdised finite dement method (GFEM). The difference between
the XFEM and the GFEM is that the former enriches the surrounding nodes instead of the crack tip, while
the latter only enriches the crack tip. The weskness of most angular eements as wdl as the XFEM and the



GFEM is that they predict accurate globa displacements but not accurate SIFs at the crack tip. The SIF has
to be evauaed with the help of energy related parameters such as the J-integral by a podt-processing
procedure. This limits the gpplication of sngular dements, XFEM or GFEM in fracture smulation.

In order to determine the SIF directly without extra post-processing, an dternative agpproach is introduced to
enrich the FE approximation of the crack tip node as well as its surounding nodes with not only the first
term but aso the higher order terms of the crack tip asymptotic fidd usng the PUM. It differs from the
XFEM in that the enriched fidds are the actud crack tip asymptotic fidds and the additiond coefficients of
the enriched nodes are the relevant coefficients of this expanson. Sengtivity to the quadrature rule and
number of retained terms, as well as the effect of congraining the enriched nodes, are studied. The computed
SIFsof typicd cracked specimens will be vaidated with results avalable in the literature.

ENRICHING THE CRACK TIP FE APPROXIMATION USING PUM
For our purposes and without loss of generaity, we consider only Mode | crack problems. The truncated N

terms of the digplacement expangons near the tip of acrack can be written as[3, 4]
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where (r, [J) are the polar coordinates with the origin at the crack tip, and the angular functions
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The coefficient of the first tem isrelated tothemode | SIF K, as a, =K, //2p .
In order to use higher order terms, r isnormaised as
F=r/r, (4)

where rp, is a characterigtic length of the dements with enriched nodes, eg., the length of a sde or of the
diagond of arectangular ement. Taking into account of (4), digplacements (1) become
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with the coefficients being related as
a¢=a,r"? (6)

For an dement near a crack tip (cf. Figure 1), the gpproximation of displacements enriched with the
truncated crack tip asymptotic fields (5) usng the PUM can be written as
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Figure 1. A schematic picture of the dements and enriched
nodes near a crack tip

where | is the node set of an element, eg., for dements i and j in Figure 1, I={i, i, i, i,} and
{i, i, Js . respectivdly. E is the st of the enriched nodes of the eement, E={i, i, i, i,} for
dement i, and E={j, j,} for element j. Approximation (7) may be smplified in actua cases For an
eement which includes the crack tip, eg. dement i in Figure 1, I=E. Noting the condstency condition
é f. (x) =1 we have from (7) the displacement approximation
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While for an dement which does not include the crack tip, e.g. eement j, we have
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If adl enriched nodes are congrained, i.e, the nodd displacements are set to be zero, the displacement
goproximation for dements including the crack tip (eg., shaded eements in Figure 1) become the truncated
crack tip asymptotic field. The outer ring of dements surrounding these dements actudly maich the crack
tip fidd with the standard FE approximation. However, the current gpproach differs from dl exiding
sngular dementsin that higher order terms have been taken into account.

From (7), we have the strain vector
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where q isthe general nodal displacement vector, and a¢ ={a¢ a$ --- ag¢}. Theadditiond matrix

B=[B B,

vy}
jus]
2

(11)

with its nth dement or column being
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With the use of the enriched drain-displacement relation (10), the dement giffness matrix can be formed in
the generd way.

NUMERICAL EXAMPLES

A dngle edge crack in a finite rectangular plate (SEC) shown in Figure 2 is chosen firs as a benchmark
problem. The coefficient of the singular term a, computed by the present method will be compared with the
reference K, solution givenin [9]

KI
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1.12- 0.2:% +1O.6(%)2 - 21.7(%)3 + 30.4(%)4, K, =s+/pc (13)

which is claimed to be accurate to within 10 for h/w?3 1 and c/w £ 0.6. An eccentric through gack in a
finite rectangular plate (Figure 3) is andysed next to show the potentid of the present method in tregting
multiple crack tips. For both specimens, h=w=1 are used. As the coefficients in the asymptotic expansons
(1) are independent of the materia condants, in the computations Young's modulus E is st a 1, and
Poisson'sratio [J at 0.25. The load (Figures 2 and 3) is chosen as [0 =1 with its units condstent with that of E.
A date of plane stressis considered and the thickness is assumed to be unity.
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Figure 2. A dngle edge crack ir Figure 3: An eccentric through crack
afinite rectangular plate in afinite rectangular plate

Only the upper hdf of the plate in Figure 2 or 3 is consdered and divided into 10(J10=100 regular elements
because of symmetry. The hiliner 4-node isoparametric dement is used together with a 212 Gauss

quadrature. The norma nodd displacements are fixed on the axis of symmetry. rm=0.1+/2 is used throughout
the computations.



For the SEC with c/w=0.3, the computed a; with N=42 and various ngaus, order of Gauss quadrature, is
plotted in Figure 4. The results obtained with or without condraining the enriched nodes are included.
Obvioudy, results obtained by condraining the enriched nodes and a reduced integration (ngaus=2) are the
most accurate. Quadratures higher than order three give dmost identicd results. Hence in the following we
will congtrain the enriched nodes. But the quadrature rule will be tested extengvely.
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Figure 4: Computed a; for various quadrature orders with
different constraints on the enriched nodes
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Figure 5: Convergence of the computed a; with an increase in the
number of retained tarms

Agan for the SEC with c/w=0.3, the convergence of the computed a; with an increase in the retained terms
N of vaious integration orders is studied and reported in Figure 5. It is clear that the second order Gauss
integretion again gives the most accurate results. Usng only the firs teem or a few higher order terms
improves the accuracy but not by much. Desirable accuracy has been maintained by using 40 terms.

By retaning 40-50 terms (a deeper crack needs more terms) and choosing ngaus=2, the computed a; for
various crack lengths is lisgted in Table 1 and compared with the solution given by (13). It is clear that very
high accuracy (about 1%) has been obtained by the present method.



TABLE 1
COMPUTED &1 FOR VARIOUS CRACK LENGTHSFOR THE SEC

c/w 0.2 0.3 04 05 0.6 0.7 0.8
Computed a; 0.433 0.648 0.936 1.404 2.165 3.554 5.668
(13) 0.434 0.645 0.945 1421 2.219 3.555 5.731

The eccentric crack in Figure 3 can be eadly treated by the present method. d=0.2, ¢c=0.4 and ngaus=2 are
used and 43 terms are retained. The computed a; for the left and right tips are 0.453 and 0.337, respectively.

The diffness matrix of an enriched dement as wel as the sysem is generdly rank deficient. This problem
cannot be overcome completely by accurate integration. However, this kind of rank deficiency can be taken
care of numericaly [8]. In our computations, we used the program given in [10].

DISCUSSION AND CONCLUSIONS

By enriching the FE gpproximation of the crack tip node as well as its surrounding nodes with not only the
fird term but dso the higher order terms of the crack tip asymptotic field, accurate SIFs are determined
directly without extra post-processng. To mantan high accuracy, 40-50 terms in the crack tip asymptotic
fild should be retained, a reduced quadrature (212 Gauss quadrature used in this paper) is desirable, and the
enriched nodes should be constrained properly.

Since the generd bilinear interpolation cannot improve the gpproximation of the crack tip fied, congraining
the enriched nodes improves the condition of rank deficiency and thus the accuracy of the results.

2012 Gauss quadrature provides the most accurate results because the truncation errors are manly
compensated by the higher order terms, while using accurate integration the errors are averaged among al
terms.

Although only Mode | cracks are reported, it is sraightforward to employ this method to more complicated
crack configurations and/or loading conditions, especidly together with the method for incorporating
discontinuous displacement fields across the crack face away from the crack tip [5-7].
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