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Abstract

In this work, we make a comparison of continuum simulations using a cohesive mod-
eling approach with the predictions of atomistic simulations. Cohesive approaches
to modeling fracture differ from classical approaches by embedding the physics of
the fracture process directly in the simulation procedure. Cohesive zone methods
use a traction-separation relationship to provide the constitutive relations for the lo-
calized failure mode of deformation. For modeling brittle fracture, the form of these
traction-separation relations is typically based on simple physical arguments and
motivation from semi-empirical atomistic potentials. First, we derive the parame-
ters for the cohesive relations based on evaluation of Griffiths condition with the
atomistic system. We then compare the fracture behavior predicted by this cohesive
model with the results of atomistic simulations under quasistatic and dynamic load-
ing conditions. We find that while cohesive approaches adequately reproduce the
atomistic results under quasistatic loading, dynamic conditions reveal the significant
effects dispersion has on the behavior of dynamically propagating cracks.
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1 Introduction

As early as 1933, Prandtl[3] employed a cohesive traction relation, motivated
by atomistic considerations, to analyze debonding between two slender beams.
Cohesive approaches to modeling fracture replace the point singularity model
of the crack tip with a stress or traction response that incorporates a finite
cohesive strength and a finite work to fracture. These approaches promise to
reproduce the behavior of propagating cracks more accurately because the
dissipation mechanisms associated growth may be directly incorporated in
the cohesive relations. The approach of restricting the mechanisms of cohesive
fracture to act only across discrete surfaces is gaining wide acceptance in the
fracture modeling community. A finite element implementation of the cohesive
surface approach was introduced by Needleman [2]. Ironically, while cohesive
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approaches admit a very detailed description of crack tip processes, these
processes are largely unobservable due to the small length scales involved
and the relative inaccessibility of the fracture process zone. In this work, we
attempt to validate the cohesive surface approach by comparison with a model
atomistic system. Atomistic simulation provides physically realistic energetics
and dynamics of crack growth processes that can be readily analyzed.

Depending on the material system, the fracture processes may be numerous
and complicated. For this work, we consider only brittle fracture, which we
define to mean that all dissipation during the fracture process is associated di-
rectly with the creation of new free surfaces. Accordingly, our continuum sim-
ulations employ a rate and history independent bulk constitutive model. The
atomistic system used in this study is similar to the one considered by Farid et
al. [1] to study the behavior of crack growth under severe loading conditions.
Given sufficient driving force, this system activates additional mechanisms
of dissipation during fracture. These include increasing the fracture surface
area through roughening and relieving stresses through dislocation emission.
In this study, crack driving forces are maintained below a level at which these
dissipation mechanisms are activated. Therefore, we expect to understand the
fracture behavior in terms of the surface dissipation and the transport of strain
energy by elastic waves or dispersion by phonons for the atomistic system.

The strip geometry used in this study is illustrated in Figure 1. If the strip is
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Fig. 1. Geometry of the two-dimensional strip.

sufficiently long in the lateral dimension, a J-integral analysis can be used to
determine the static crack driving force under plain stress as

G =
E h ε2

2 (1− ν2)
, (1)

where E is Young’s modulus, ν is Poisson’s ratio, and ε = δ
h

is the nomi-
nal applied strain. This quasistatic analysis only applies to the onset of crack
growth. Accurate predictions of the response of either the continuum or atom-
istic system during dynamic propagation remains a challenge for analysis.
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2 Methods

Over a domain Ω with a boundary Γ, the variational form of the dynamic
equation of equilibrium in the absence of body forces may be written as∫

Ω

ρ
∂2u

∂t2
· δu dΩ +

∫
Ω

σ : δε dΩ +
∫

Γint

t(∆) · δ∆ dΓ =
∫
Γh

t · δu dΓ, (2)

where ρ is the mass density, u is the displacement field, ε = 1
2

(
∇u + (∇u)T

)
is the infinitesimal strain tensor, and the Cauchy stress σ and traction t are
related through the normal n as t = σn. Contributions from surface tractions
in (2) appear over regions of the boundary Γh ⊆ Γ with externally applied trac-
tions and over pairs of internal surfaces Γint due to the variation in the surface
opening displacement δ∆. For this study, we use a model traction-separation
relation similar to the one introduced by Tvergaard and Hutchinson [4]. The
magnitude of the cohesive traction is expressed as a function of a nondimen-
sional effective opening displacement

∆ =
√

(∆t/δ∗t )
2 + (∆n/δ∗n)2, (3)

where δ∗t and δ∗n represent the characteristic tangential and normal opening
displacements, respectively. As illustrated in Figure 2(a), the tri-linear mag-
nitude of the traction t̂(∆) depends on a single shape factor ∆∗. The traction
response is assumed to be reversible up to ∆ = ∆∗, after which the surface is
assumed to have failed. Defining a traction potential

ϕ(∆) = δ∗n

∆∫
0

t̂(ξ) dξ (4)

yields the rate-independent, mixed-mode traction-separation relation

t(∆) =
∂ϕ(∆)

∂∆
= δ∗n t̂(∆)

∂∆

∂∆
(5)

and a fracture energy

Gc =
1

2
σcδ
∗
n. (6)

The cohesive surface relation (5) is not intended to represent the response of
any specific material. Surrounded by an elastic medium, the detailed shape of
the relationship is not expected to have a significant effect. The relationship
simply introduces a well-defined fracture energy into the simulation procedure
with a clear point of complete failure in a form that facilitates analytical study.
The stress response of the bulk is defined by

σij = [µ δijδrs + λ (δirδjs + δisδjr)] εrs, (7)

where µ and λ are Lamé constants.
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The approach for the atomistic simulations similarly makes use of a model sys-
tem. The single crystal sample is constructed from a two-dimensional, hexag-
onal lattice bound by the Lennard-Jones 6-12 potential

φLJ(r) = 4 ε
[
− (σ/r)6 + (σ/r)12

]
, (8)

where σ sets the length scale of the potential and −ε is the depth of the
potential well. In order to allow us to control the range of influence of the
potential without introducing abrupt behavior at a cut-off distance, we use
the modified potential

φ(r) = φLJ(r)− φLJ(rc)− (r − rc)φ′LJ(rc) , (9)

where rc is the distance at which the potential and its first derivative pass
through 0. This cut-off distance is selected to include up to the fifth nearest
neighbors in the undeformed configuration. The crystal is oriented with lattice
vectors

r(1) = r0

1

0

 and r(2) =
r0

2

 1
√

3

 , (10)

where r0 is the interatomic spacing. We choose h
r0

= 212 to distance the frac-
ture process zone from the rigidly imposed boundary conditions. The charac-
teristic dimension of the finite elements near the cleavage plane is hmin = r0.

3 Results and discussion

The parameters for the continuum and atomistic systems are selected to cor-
respond with each as closely as the differing descriptions permit. Due to the
centrosymmetry of the undeformed lattice, the initial elastic properties of the
crystal display Cauchy symmetry, for which λ = µ. The shear modulus µ is
matched to the elastic properties calculated for the crystal, and the density ρ
is selected to correspond with the mass and atomic volume of the undeformed
lattice. The fracture properties of the systems cannot be compared so directly.
The fracture energy φ is not solely dependent on ε, the energy of a single bond,
and the effective opening displacement ∆ (3) does not correspond to the bond
length r.

The fracture parameters in the cohesive relation t(∆) (5) are selected in order
to match the traction distribution on the cleavage plane of the strip model
at the critical boundary displacement. The critical displacement is identified
by applying Griffith’s condition to the atomistic system. The boundaries are
displaced until the static, uncleaved configuration of the strip is no longer en-
ergetically favored. Comparing the bond energy per undeformed volume “far”
ahead of the pre-crack with the reference energy of the crystals yields the frac-
ture energy Gc. The traction distribution for the atomistic system is calculated
from the force in all bonds crossing the cleavage plane, averaged over segments
of length r0 along the fracture surface. This calculation yields a peak traction
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of approximately E/18, where E is Young’s modulus of the crystal. Matching
just these two characteristics yields traction distributions illustrated in Fig-
ure 2(b). Quasistatic analysis of the strip configuration yields a failure strain
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Fig. 2. (a) the traction-separation relation and (b) a comparison of the traction
distribution on the cleavage plane.

εc = δ
h
≈ 1.5 %. The continuum simulation cleaves at a strain within 1% of the

predicted value. Correcting the Griffith analysis to account for the compliance
of the cohesive surface layer reveals that the continuum simulation reproduces
the expected failure strain to within nearly 0.1%. These results indicate that
model has sufficient extent both ahead and behind the crack tip to match
the steady-state cracking assumptions and that the tractions are well resolved
over the elements in the fracture process zone. The atomistic model cleaved at
a strain approximately 4% higher than that predicted by the Griffith analysis,
which we attribute to the nonlinear response of the interatomic potentials.
Figure 2(b) illustrates that the region on the traction distribution behind the
peak is a tail that decays over a distance of approximately 10 r0, and the
stresses ahead of the tip stay well above the farfield values to a distance of
nearly 25 r0.

For the dynamic simulations, the continuum and atomistic system are loaded
from near their critical strains with a constant velocity of cd/δ̇ = 7500, where
cd is the dilatational wave speed in the material. The atomistic system is
loaded to near the critical strain using molecular statics, and an energy con-
serving conserving time integration scheme is used for the dynamic phase of
the simulations. The variation of the crack velocity as a function of crack
length is shown in Figure 3(a). The velocity is normalized by the Rayleigh
wave speed cR, the limit speed for cracks propagating under mode I loading.
While the crack speed in the continuum simulation steadily climbs towards
the limiting speed with increasing driving force, the crack speed in the atom-
istic simulation does not exceed approximately 20% cR. Figure 3(b) reveals the
markedly different energetics associated with crack growth for each system.
The figure shows the rate of kinetic energy generation with crack extension
∆T
∆a

as a function of crack length. The continuum simulation shows that ap-
proximately 3% of the strain energy required for quasistatic crack growth is
converted to kinetic energy for 1 < a

h
< 4, corresponding to 0.2 < ȧ

cR
< 0.7.

For a
h
> 4, acceleration of the crack slows and the rate of kinetic energy gener-
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Fig. 3. Comparison of the continuum simulations with a cohesive surface interface
(dashed lines) with atomistic simulations (solid lines).

ation decreases although the driving force continues to increase. The smoothed
results from the atomistic simulation (dark, solid line in Figure 3(b)) reveal a
steadily increasing rate of kinetic energy generation. The results suggest that
the terminal crack speed for the continuum simulation is determined largely
by limits in the driving strain energy release rate, while the terminal crack
speed in the atomistic system is controlled by an intrinsic limit on the rate of
bond breaking at the crack tip. Excess energy is converted to kinetic energy
rather than increasing the speed of fracture.

In summary, we have compared the response of a continuum and atomistic sys-
tem under conditions of quasistatic and dynamic fracture. Under quasistatic
conditions, the cohesive surface approach reproduces the predicted response
of the strip model. This result is expected since traction potential (4), with
a simple change of variables, is equivalent to the J-integral evaluated on a
contour over crack surfaces surrounding the tip. Under dynamic conditions,
simply adopting a cohesive approach cannot reproduce crack dynamics of an
atomistic system even when restricted to purely brittle propagation. We are
currently assessing methods in which the continuum simulation approach can
be improved to account for the dispersive behavior displayed by the atomistic
system.

References

[1] F.F. Abraham, D. Brodbeck, R.A. Rafey, and W.E. Rudge. Instabilities
dynamics of fracture: a computer simulation investigation. Physics Review
Letters, 73:272–275, 1994.

[2] A. Needleman. A continuum model for void nucleation by inclusion debonding.
Journal of Applied Mechanics, 54:525–531, 1987.

[3] L. Prandtl. Ein Gedankenmodell für den Zerreißvorgang spröder Körper.
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