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ABSTRACT

Mode I, quasi-static, steady state crack growth is analyzed for rate dependent materials under plane strain
conditions in small scale yielding.  The solid is characterized by an elastic-viscoplastic constitutive law and
the plane ahead of the crack tip is embedded with a rate dependent fracture process zone.  The macroscopic
work of fracture of the material is computed as a function of the crack velocity and the parameters
characterizing the fracture process zone and the solid.  With increasing crack velocity a competition exists
between the strain rate hardening of the solid, which causes elevated tractions ahead of the crack tip that
tend to drive crack propagation, and the rate strengthening of the fracture process zone which tends to resist
fracture.  Results for material parameters characteristic of polymers show that the toughness of the material
can either increase or decrease with increasing crack velocity.  To motivate the model, the cohesive zone
parameters are discussed in terms of failure mechanisms such as crazing and void growth ahead of the
crack tip.  The toughness of rubber modified epoxies is explained by employing the fracture model along
with micromechanical void cell calculations.
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1. INTRODUCTION

In this work the toughness of a rate dependent material is determined as a function of certain intrinsic
material properties.  An elastic-viscoplastic constitutive law characterizes the bulk material deformation
and a rate dependent cohesive zone law describes the separation ahead of the crack tip.  A steady state
finite element formulation, Dean and Hutchinson [1], is used to determine the stress and strain fields
around the moving crack and to relate the critical applied energy release rate to the intrinsic material
toughness.



Figure 1 is a schematic of a crack propagating in an elastic-plastic solid under Mode I, plane strain, small
scale yielding, steady state conditions.  The displayed shape of the plastic zone is the result of a calculation
for an elastic-perfectly plastic, rate independent material.  The plastic zone shape for rate dependent
materials is similar in both size and shape.  Far from the crack tip the stresses follow the Mode I elastic K
field.   As the crack propagates through the solid the crack tip is surrounded by active plasticity, elastic
unloading and plastic reloading sectors, Drugan et al. [2].  Far behind the crack tip there is a wake of
residual plastic strains where the material has unloaded elastically.

x1

x2

active plastic zone
elastic unloading wake

elastic unloading sector

plastic reloading 

K

K

embedded process zone

σ

δ

ȧ

Figure 1:  The plastic zone near a steadily propagating crack in an elastic-perfectly plastic material.

2. GOVERNING EQUATIONS

We adopt a rate dependent elastic-viscoplastic constitutive model of the form used by Marusich and Ortiz
[3] and Xia and Shih [4],
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where σ = 3
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s sij ij  is the effective stress, sij ij kk ij= −σ σ δ1
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 is the effective plastic strain rate, ε̇o  is a reference plastic strain rate

and m is the plastic strain rate sensitivity exponent.

The components of the plastic strain rate are then given by
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Finally, the elastic strain rates are given by
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where E and ν are the isotropic Young’s modulus and Poisson’s ratio.  Notice that this form of the

constitutive law allows for a well-defined region of elastic response which is required for the small scale
yielding approximation to be used.

The rate dependence for the fracture process zone is taken to follow a similar functional form as that for the
bulk solid.  In order to facilitate the finite element calculations it is assumed that there is always an initial
linear portion in the traction-separation law.  Hence, the crack opening displacement, δ , is the sum of an
elastic (linear) and a plastic part.  The cohesive traction obeys
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where λ1 is a shape parameter of the static traction-opening law (see Tvergaard and Hutchinson [5]), σ̂  is
the peak stress of the static form of the traction-separation law and δc is the critical crack opening where
tractions drop to zero.  The second shape parameter of the traction-separation law is λ2 .  The plastic

opening rate, δ̇ p , is described by
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where δ̇o  is a characteristic crack opening rate, t is the normal traction acting on the crack plane, q is the

rate exponent of the fracture process zone and to
pδ( ) represents the static form of the traction-separation

law.  We also impose the condition (8) requiring that the total crack opening, δ , must always be less than
the critical crack opening, δc, for all applied opening rates otherwise the traction must drop to zero.  A
more detailed description of the traction-separation law can be found in Landis et al. [6].



3. RESULTS

Dimensional analysis suggests that the macroscopic steady state toughness depends on the following
dimensionless parameters
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where ȧ  is the crack velocity and
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is the approximate size of the plastic zone when the applied energy release rate, K, is equal to Ko, where
Ko is related to Γo  through (10).  Previous studies on rate independent materials have demonstrated that
the last 4 parameters in (9) are of secondary importance.  For this study the parameters E yσ = 50 ,

ν = 0 35. , λ1 0 15= .  and λ2 0 5= .  are used.

0

2

4

6

8

10

2 3 4 5 6

E

yσ
= 50

Γ
Γ

ss

o

σ̂ σ y

˙

˙
δ

ε δ
o

o c
or q→ ∞ → ∞

(rate independent 

process zone)

10 100 1000 m = 10

ν = .350

˙
˙

a

Ro oε
→ 0

λ2 0 5= .

λ1 0 15= .

Figure 2:  Steady state toughness versus peak cohesive strength for a rate independent cohesive zone law.

The first set of results shown in Figure 2 are for a solid with rate exponent m = 10 and a rate independent
fracture process zone.  The rate independent fracture process zone is a limiting case of Equations (6-8) with
˙ ˙δ ε δo o c( ) → ∞ or q → ∞ .  Figure 2 plots the steady state toughness as a function of the peak cohesive

stress in the fracture process zone.  For values of σ̂ σ< 2 y  the plasticity in the bulk solid is not of sufficient

intensity to induce a significant amount of dissipation and the steady state toughness is only slightly greater
than Γo .  For exceedingly slow crack velocities the model reduces to a rate-independent elastic-perfectly



plastic material where the solid cannot sustain normal tractions greater than approximately 2 96. σ y  ahead

of the crack tip.  Hence, if ˆ .σ σ> 2 96 y  then the fracture process zone cannot separate and Γss  is infinite.

At finite crack velocities the strain rate effects in the solid become relevant.  Increasing crack velocities
allow for elevated normal traction acting on the crack plane.  However, the normal traction ahead of the
crack tip cannot exceed σ̂  which limits the intensity of the plastic deformation and hence the toughness of
the material decreases as crack velocity increases.  The effects shown in Figure 2 are analogous to strain
hardening or strain gradient hardening effects in rate independent materials, Wei and Hutchinson [7].  The
general trend is that material hardening elevates tractions ahead of the crack tip which promote the
separation of the fracture process zone.

The introduction of a rate dependent fracture process zone sets up a competition between the hardening of
the solid and the strengthening of the cohesive zone.  As such, trends in the steady state toughness are not
as straightforward as those for the rate independent fracture process.  Furthermore, Γss  is sensitive to the

two rate parameters associated with the fracture process, q and δ̇o .  It is likely that q and δ̇o  will be
difficult to measure directly, leaving their determination to micromechanical models of the fracture process.

Figure 3 plots Γss  as a function of σ̂  for various crack velocities.  The rate exponent for the fracture
process was taken to be equal to that of the solid for these simulations, q m= = 10.  Focusing first on the

solid curves with the normalized reference crack opening rate ˙ ˙δ ε δo o c( ) = 1, we note that steady state

toughness now increases as the crack velocity increases.  Within the range of Γss  shown, the strengthening
of the fracture process dominates the hardening in the bulk solid.  The two dotted lines on Figure 3 are
results for a normalized crack velocity of ˙ ˙a Ro oε( ) = 100  and reference crack opening rates of
˙ ˙ .δ ε δo o c( ) = 0 1 10and .  For a given crack opening rate Eqn. (6) indicates that the traction acting across

the crack faces decreases as δ̇o  increases.  Crudely, increasing δ̇o  is similar to decreasing σ̂  at a given
opening rate.
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Figure 3:  Toughness versus peak cohesive
strength for a rate dependent traction-
separation law with q m= = 10.

Figure 4: Toughness versus peak cohesive
strength for a rate dependent traction-
separation law with q m= =2 20 .



Notice that the solid curves in Figure 3 seem to approach the ˙ ˙a Ro oε( ) → 0 curve from the left as the crack

velocity decreases.  This appearance is due to the range of Γss  shown in the figure.  Notice that the

˙ ˙a Ro oε( ) = 100 , ˙ ˙δ ε δo o c( ) = 10  simulations cross over the ˙ ˙a Ro oε( ) → 0 curve.  This is also the case for

the ˙ ˙δ ε δo o c( ) = 1 cases, however the crossover occurs at much higher values of Γss .  A similar change in

the toughness versus crack velocity trend is evident for a value of q m= 2  to be presented next.

As we have stated throughout q  and δ̇o  could be obtained from a micromechanical analysis.  Kramer and
Berger [8] present a model for craze widening and under their assumptions the rate exponent for the craze
widening is predicted to be twice that for bulk deformations.  We note that their assumed form of the bulk
constitutive law was power law viscous which is similar to Eqn. (1) except that no yield surface exists, i.e.
the additive constant of 1 is removed from the left hand side of (1) and plastic straining occurs at all stress
levels.  For increasing levels of q Eqn. (6) indicates that for a given applied opening rate the traction acting
across the crack surfaces decreases.  As shown on Figure 2 the rate independent fracture process limit
corresponds to q → ∞ .  Hence, an increase in q will have similar effects on Γss  as an increase in δ̇o .
Figure 4 plots Γss  as a function of σ̂  for three crack velocities and q m= =2 20 .  Here again a crossover
in the trend of toughness versus velocity occurs.  For static peak cohesive stresses lower than
approximately 2 7. σ y , Γss  increases slightly as ȧ  increases.  However, for ˆ .σ σ> 2 7 y  the toughness

decreases dramatically as the crack velocity increases (within the range of velocities shown).

4. DISCUSSION

In this work a rate dependent bulk material was coupled with a rate dependent fracture process zone.  When
the fracture process is rate independent the rate hardening in the bulk solid allows the tractions ahead of the
crack tip to elevate and overcome the strength of the cohesive zone.  Hence, the toughness of the material
decreases as the crack velocity increases.  For a rate dependent fracture process zone where both the
toughness and strength increase with increasing crack opening rate predictions of the model are more
complicated.  However, a simple rule of thumb could be proposed: if the peak cohesive stress is less than
approximately 3σ y  then the steady state toughness will increase with increasing crack velocity while the

opposite trend holds for σ̂ σ> 3 y .  The coefficient of 3 is a remnant of the perfectly plastic description of

the static stress-strain behavior and the introduction of strain hardening will change the magnitude of the
peak stress where this transition occurs.  Lastly, the rate of increase/decrease of Γss  with respect to crack

velocity is quite sensitive to the q and δ̇o  parameters of the fracture process.
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