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ABSTRACT 
 
The paper is concerned with the application of the Hillerborg fictitious crack model in mixed mode I-II 
fracture of concrete. It is shown that the cohesive normal traction between opposite crack faces removes all 
stress singularities at the crack tip, provided that the direction of the crack propagation follows a path of 
minimum potential energy. In addition, the stresses at the crack tip are hydrostatic. Therefore, these stresses 
do not reveal a preferable direction of crack propagation. Also, as stresses are finite, stress intensity factors 
are all zero and KI-KII concepts cannot reveal a direction of propagation. A new concept of determining the 
direction of crack propagation based on a “predictor-corrector” principle is presented, in which, firstly, the 
crack is advanced tangentially into the uncracked concrete, the predictor. Thereafter the direction is updated 
using a corrector. Based on the J, L and M integrals of the conservation laws, two proposals for the updated 
direction are presented. 
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INTRODUCTION 
 
The original concept of the fictitious crack model proposed by Hillerborg [1] relies on the existence of a σ-δ 
relationship, i.e. a relationship between normal stresses and crack opening width, and that a crack propagates 
when the stress at the crack tip exceeds the tensile strength. Mixed mode fracture was not originally 
considered. However, Peterson [2], although investigating mode-I fracture only, implied that the fictitious 
crack model is valid also for mixed mode fracture, and proposed that the crack would propagate in a 
direction perpendicular to the first principal stress. Ingraffea and Samoua [3] applied the fictitious crack 
model using the FEM-method in mixed mode fracture, determining the direction of crack propagation based 
on KI-KII concepts. 
 
However, by observing stresses and corresponding external loads, the author found in his research that the 
cohesive normal traction between opposite crack faces removes all stress singularities at the crack tip, 
provided that the direction of the crack propagation follows a path of minimum potential energy. In addition, 
the stresses at the crack tip are hydrostatic. Therefore these stresses do not reveal a preferable direction of 
crack propagation. Also, as stresses are finite, stress intensity factors are all zero and KI-KII concepts cannot 



reveal a direction of propagation either. The direction of crack propagation determined by one of the 
principles above will therefore be coincidental, the paradox arising, that one gets an answer for an 
“incorrect” current crack tip position only, at which stresses are infinite and not hydrostatic. 
 
The energy release rates for various changes in defects can be determined by evaluation of the J, L and M 
integrals as shown by Eshelby [4] and Budiansky/Rice [5]. Applying their results, the author presents two 
proposals for determining the direction of crack propagation based on a direction of maximum change in 
energy release rate, as determined by the J, L and M integrals. All results presented are based on the 
application of the boundary element method (BEM). 
 
THE BEM-METHOD AS VEHICLE FOR THE FICTITIOUS CRACK MODEL 
 
The basic equation in the boundary element method is the extended Somigliano's identity, valid for both 
internal points and for points on the boundary:  
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where uij(s,q) and pij(s,q) are the fundamental solutions for displacements and tractions respectively for a 
unit point load. uj(q) and pj(q) are the displacements and tractions respectively at the boundary. bj(q) is the 
body force, Cij(s) is a matrix depending upon the boundary shape, Ω is the domain considered and Γ the 
corresponding boundary. The reader is referred to literature for the fundamentals of the boundary element 
method, for example Brebbia et al [6]. Applying the multi-domain BEM-method, the fracture process zone 
could be embedded directly in the boundary element method by means of non-linear interface conditions, 
depicted by matrix S in Fig. 1. However, the principle of superposition as devised by Peterson [2] for mode-I 
fracture is more appropriate for the objectives in this paper. In this method the boundary element method 
merely serves as a device to determine influence coefficients.  

coh,kP      =1
k'th nodal point of  
process zone.

d

σ tip
xx

σ tip
yy

σ tip
xy

i

ijΓ

jiΓ

iΓ
jΓ

Ω Ωi j

Fracture process zone












+




























−

=




























Ω

Ω

Γ

Γ

Γ

ΓΓ
−

Γ

ΓΓ

Γ

Γ

Γ

ΓΓ

ΓΓ

j

i

j

ij

i

jjiji

iji

j

ij

i

jji

iji

r
r

p
p
p

GGSH0
0GG

u
u
u

HH0
0HH

)( 1

 

Figure 1 The multi-domain BEM-method for the fictitious crack model. 

The objective is, for a given crack tip position, not necessarily the correct one, to determine an external load 
that complies with the following conditions: 1) the first principal stress in front of the crack tip equals the 
tensile strength and 2) normal stresses and crack widths in the crack process zone comply with the σ−δ 
relationship.  
The external load naturally causes deformations and the crack to widen. On the other hand, the traction in 
the fracture process zone attempts to attract the two crack surfaces to each other. To determine the external 



load, the stresses at the crack tip and the crack width along the crack surface are firstly determined for a unit 
external load. Secondly, for unit normal tractions at all the nodes along the crack surface, the stresses at the 
crack tip and the crack width along the crack surface are determined (see Fig. (1)). The total stress  at 
the crack tip is thus composed of a linear combination of the stress from the external load and stresses from 
the cohesive tractions as follows: 
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where index p indicates the stresses from the unit external load and index k the stresses from the individual 
unit cohesive tractions along the process zone. Similarly, the crack width at the nodal points along the crack 
surface δi are composed of a linear combination of crack width from the external load and crack width from 
the cohesive tractions along the crack surface: 
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where δi,p are the crack width from the unit external load and δik the crack width from the individual unit 
cohesive tractions along the process zone. 
 
Having determined the influence coefficients above, the external load and the crack width profile that 
comply with the objectives above, can now be determined. This can only be accomplished iteratively. To 
assure convergence, a displacement-controlled procedure must be used. The crack opening opposite the 
crack tip, say δn, is used as control parameter. For a given value of the control parameter nδ , the cohesive 
tractions pcoh,i are firstly initialised, for example setting pcoh,i=ft. With this initial guess, a load factor is 
determined from Eqn. 4: 
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The crack openings δi at the other nodal points can now be determined and from the σ−δ relationship the 
cohesive tractions at the nodal points are updated. A new load factor is computed and so forth until the 
cohesive tractions stabilise. From Eqn. 5 the stress tensor at the crack tip is hereafter evaluated and the first 
principal stress is determined: 
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The value of the control parameter is hereafter iteratively altered, for example using the bi-section method, 
until the requirement σ1=ft is satisfied. 
 
OBSERVING VARIOUS CRACK TIP POSITIONS 
 
A three point bending beam with a flat notch placed in the shear zone is now considered. The depth of the 
beam is d=400mm, the width b=1000mm and the length l=1600mm. The notch has a depth of d'=100mm 
and is situated a distance a=400mm from the centre line of the beam. The size of the support areas are 
ls=16mm, whereas the point load at the centre of the beam is distributed over an area of lp=32mm. Due to 
symmetry only half of the beam is modelled. A straight crack originating at the root of the notch, having a 
length of h=100mm is considered. The concrete tensile strength is ft=4MPa, the modulus of elasticity 
E=40GPa and the fracture energy G=100N/m, the σ−δ relationship varying linearly. 
 
Applying the principles described in the previous section, the stress distribution in front of the crack has 
been observed for various positions of the crack tip, expressed by means of the angle v, by which the crack 
direction deviates from vertical. In Fig. (2) the normal traction, the tangential traction and the tangential 
normal stress, all with respect to the sub-domain boundaries, are plotted for crack tip positions 
corresponding to v=15º, v=20º and v=25º. It is easily recognized that for v=15º and for v=25º the tangential 
traction tends towards infinity, however, with opposite sign for the two crack tip positions. At v=20º, the 
tangential traction at the crack tip almost equals zero. The normal traction and the tangential normal stress 



are almost continuous across the crack tip and it can be concluded that stress singularities are not present for 
this particular position of the crack tip. 

External load

 
Figure 2 Observing external load and associated stresses for various crack tip positions. 

In Fig. (2) the external load is plotted for the various crack tip positions as well. It is observed that the 
external load is minimal for v=20º, i.e. for the crack tip position at which the stress singularities are all 
removed. The important observation is made that, following a crack path other than the one corresponding to 
continuous smoothness of stresses at the crack tip, one does not follow a path of minimum potential energy 
configuration. 
 
DEFECT VARIATIONS AND RELATED ENERGY RELEASE RATES 
 
The conservation laws are the direct consequence of the basic equations of the theory of elasticity. Knowles 
and Sternberg [7] have shown that, when these equations are all satisfied, the following integrals:  
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vanish for arbitrary closed integration paths S surrounding a homogeneous singly connected isotropic elastic 
domain. In Eqn. 6-9 W is the strain energy density, ni is the unit outward normal vector of S, ui is the 
deformation vector, εij is the first order strain measure, pi is the traction vector at S, corresponding to the unit 
outward normal vector and finally, x and y are coordinates of points at S. The subscripts refer to components 
in a global Cartesian reference frame (see Fig. (3)). 
 
If a defect is present in the domain and the integration path S completely surrounds the defect, these integrals 
differ from zero and express energy changes in the domain corresponding to certain defect variations. 
Eshelby [4] has shown that the energy release rate for an infinitesimal translation δr can be determined by 
means of Jx and Jy, whereas Budiansky/Rice [5] have shown that the energy release rate for an infinitesimal 
rotation and an infinitesimal expansion can be determined by means of L and M. This may be summarized in 
the following formulae, which give the energy release rate associated with infinitesimal variations of 
defects:  
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Figure 3 Various defect variations, translation, rotation and expansion, in an elastic domain. 

 
PREDICTING THE DIRECTION OF CRACK PROPAGATION 
 
Based on the energy release rates presented in the previous section, two proposals for predicting the 
direction of crack propagation are now made. The proposals are depicted in Fig.(4). The current crack tip is 
positioned such that the stresses are completely smooth. Firstly the crack tip is advanced a distance ∆ in the 
tangential direction, a direction adhering to the Jy=0 or L=0 principles. For this predicted crack, the external 
load and the tractions in the process zone are determined, using the principle of superposition requiring the 
first principal stress to equal the tensile strength. Secondly, for this configuration the energy release rate with 
regard to the predicted crack is determined and the direction of crack propagation is derived from the virtual 
displacements of the predicted crack, as shown in Fig.(4). In proposal A the predicted crack is given virtual 
translations, whereas in proposal B the predicted crack is expanded and rotated. The energy release rate for 
the two proposals respectively is: 
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Figure 4 Proposals for predicting the direction of crack propagation. 

From Eqn.(13), using the principle of maximum energy release rate, the direction of crack advance α is now 
determined from : 
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For the beam studied previously, the direction of crack propagation is plotted in Fig.(5) for various 
directions of the crack predictor. It was seen previously that the minimum energy configuration was 
achieved for a crack tip position corresponding to approximately v=20º, with a rather flat functional 
variation within the interval v=17° to v=22°. With proposal A the corrected direction of crack propagation is 
rather insensitive to the direction of the crack predictor and lies in the interval v=15.8-17.3º, however, 
slightly below the expected direction of propagation. Proposal B is very sensitive to the direction of the 
crack predictor. However, within a range of ±3º, the proper direction of crack propagation is determined 
fairly accurately. 
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Figure 5 Prediction of the direction of crack propagation for various directions of the predictor. 

 
CONCLUSION 
 
In mixed mode fracture applying the fictitious crack model, the direction of crack propagation may be 
accurately predicted by evaluation of the J, L and M integrals. Directions based on Jy=0 and L=0 criteria are 
derived. These directions closely predict a path corresponding to minimum potential energy. 
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