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ABSTRACT 

 
Crack initiation behavior in piezoelectric ceramics is examined for different choices of boundary conditions. 
They are referred to as the fundamental boundary-value problems when electric field/stress and electric 
displacement/strain are specified. The mixed boundary-value problems involve specifying electric 
displacement/stress and electric field/strain. Crack-growth is assumed to occur when the volume energy 
density function that accounts for interaction of mechanical and electrical effects reaches a threshold 
depending on the piezoelectric ceramic material properties. The crack driving force is shown to increase 
monotonically for positive and negative applied electric displacement or electric field. Such a trend prevails 
for the fundamental boundary-value problems as it is to be expected on physical grounds. The applied 
electric field and displacement have little influence on the energy density solution for the mixed boundary 
conditions.  
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1. INTRODUCTION 
 
Piezoelectric ceramics can be made to have “pole” directions where the dipole moments are aligned. These 
directions need not coincide with those of material anisotropy. Their interactions could involve a rotation 
and/or reflection of axes depending on whether the deformation is of the in-plane or out-of-plane type. A 
special feature of electrical and mechanical interplay is that a piezoelectric material could produce an 
electric field when deformed and vice versa. This makes piezoelectric ceramics attractive for making 
electronic devices that may include transducers, sensors, etc. Their reliability in service, however, can often 
be short changed by premature cracking. To this end, much attention has been given to analyzing the state 
of affairs near a sharp crack and the condition under which an existing crack would start to propagate. Past 
works [1-5] have reported inconsistencies between analytical and experimental results, particularly those 
concerned with application of the classical energy release rate concept. More recent works [6-10] showed 
that the energy density criterion had more success for resolving several of the previously unexplained 
fracture phenomena. 
  
Solutions based on linear piezoelasticity theory have shown that the stress, strain, electric displacement and 
electric fields possess the inverse square root of r singularity at a sharp crack tip. Here, r stands for the radial 
distance measured from the crack front. The ways with which the aforementioned four boundary conditions 

  



affect crack initiation have been discussed and analyzed using different approaches. Widely applied in the 
literature [1-5] is the energy release rate criterion. It relies on the exchange of global energy with the 
increase of local crack surface area. When electro-mechanical coupling effects are present, it is not apparent 
whether all the energy would be converted to the creation of new crack surface. This is similar to 
elasto-plastic fracture where the plastic energy being part of the total energy does not contribute to the 
increase of crack surface. It is involved only in a passive manner to reduce a portion of the total energy that 
would have otherwise be present in crack surface extension. Such a distinction is not and cannot be made in 
the energy release rate treatment. Linear theory has often been blamed as the scape goat for inadequacies 
that are embedded in the failure/fracture criterion, not because of the lack of nonlinearity. 
 
The volume energy density criterion [11,12] does not have the inherent constraint of applying a global 
energy quantity to determine local crack driving force unless all of the energy is converted to the increase of 
crack surface. It focuses attention on the failure of a local element. Crack extension is regarded as the loci of 
failed elements. The global energy is not involved locally although the correct stress-strain analysis has to 
be made for determining the local stress and strain fields. 
 
 
2. TRACTION AND CHARGE FREE CRACK 
 
The anti-plane shear crack model has been used extensively in fracture mechanics because of its simplicity 
in formulation. Referring to Fig. 1(a), a line crack of length 2a is centered in a large body that is assumed to 
extend to infinity in all direction x, y, and z. 
 

 
 
2.1 Boundary conditions 
The body is sheared at infinity with mechanical stress ∞τ  or strain ∞γ . Either electric displacement D  or 
electric field E  is applied in conjunction with the mechanical stress 

∞

∞ ∞τ  or strain ∞γ . The four possible 
combinations are ( ;E ), (∞τ ∞ ∞γ ;D ), ( τ ;D ) and (∞ ∞ ∞ ∞γ ;E ). They will be referred to, respectively, as 
Case I, II, III and IV. This is summarized in Table 1. The corresponding quantities F

∞

j and Gj (j = I, II, etc.) 
are given by 
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TABLE 3 
Classification of boundary conditions 

 
      Cases              Specified quantities     Intensity factor coeff. 

Fundamental problems   
        I                   τ∞  and  E∞                      FI ; GI         
        II                   γ∞  and  D∞                     FII ; GII 
 
Mixed problems 

     
 

       III                   τ∞  and  D∞                      FIII ; GIII                  
       IV                   γ∞  and  E∞                      FIV ; GIV 

 
Eqs. (1) and (2) are coefficients that define the stress, strain, electric field and displacement factors in the 
work to follow. 
 
More specifically, the boundary conditions are 
 

∞τ=σzy   or   ∞γ=γ zy   for                 (3) ∞→+ 22 yx
together with 

∞= EEy   or   ∞= DyD   for                (4) ∞→+ 22 yx
 

For a crack free of surface tractions and charge (i.e., an insulated crack), the conditions are 
 

0zy =σ ,  D 0y =   for 0y;ax =<                  (5) 
 

The pole is directed along the z-axis as shown in Fig. 1(b). Reversing the direction of E∞ and D∞ is 
equivalent to reversing the direction of poling. 
 
2.2 Asymptotic solution 
It can be solved for the two unknowns uz and φ from which the stresses, strains, electric field and 
displacements throughout the medium can be obtained. For the present discussion, it suffices to consider 
the asymptotic expressions [5]: 
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The stress and strain intensity factors in eqs. (6) and (7) are defined by 
  

         a)GeFc( j15j44III π−=τK ,    aFjIII π=γK                  (10) 
 

where j = I, II, etc. The electric field and displacement factors in eqs. (8) and (9) are given by 
 

aGK jE π= ,    a)GFe( j11j15D π∈+=K                  (11) 
 

The electro-mechanical coupling effects are included by the factors in eqs. (10) and (11) via the constants Fj 

  



and Gj given in eqs. (1) and (2). The local polar coordinates (r,θ) in eqs. (6) to (9) are measured from the 
crack tips; they are shown in Fig. 1(a). Note that all quantities possess the r/1  singularity, a characteristic 
that is unaffected by piezoelectricity. In this case, the angular functions of the stresses and strains in eqs. (6) 
and (7) are also the same as those for purely elastic materials.  
 
 
4. VOLUME ENERGY DENSITY APPROACH 
 
According to the volume energy density criterion [9,10], attention is focused on the failure of an element 
nearest to the crack tip as shown in Fig. 1(a). Linear piezoelasticity provides the expression: 
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which simplifies considerably for anti-plane shear deformation: 
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Since the right hand side of eq. (13) are known from eqs. (6) to (9) inclusive, dW/dV can be computed with 
the aid of eqs. (1) and (2). 
 
4.1 Crack initiation threshold 
In view of the singular behavior of the quantities in eqs. (6) to (9), dW/dV is proportional to 1/r which tends 
to be become unbounded as r→0. Unboundness of dW/dV is excluded from the solution by letting r→ro 
being the limit of r. For small values of r, the volume energy density can thus be written as 
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in which S is known as the energy density factor. It may be regarded as the crack driving force. For r = ro, it 
suffices to examine S for the condition of crack initiation. if only mechanical shear stress τ∞ is applied, then 
dW/dV can be computed simply as 
  

r
1)

c4
a(

dV
dW

44

2
∞τ=                                   (15) 

which gives S . The onset of crack initiation would be assumed to coincide with S = S)c4/(a 44
2
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critical value while τ∞ would correspond to the critical shear stress. for an isotropic elastic material c44 
corresponds to the shear modulus of elasticity and S  [13]. )G4/(a 2

∞τ=
 
4.2 Boundary-value problems 
Let pτ and qγ stand for the ratios E∞/τ∞ and D∞/γ∞, respectively. By means of eqs. (13) and (14), S can be 
calculated from the asymptotic expressions in eqs. (6) to (9). the results for Case I and II in Table 1 take the 
forms 
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Similarly, let pγ and qτ stand for the ratio E∞/γ∞ and D∞/τ∞, respectively. In the same way, the S-factor 
expressions for Case III and IV are 
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The condition of a uniform electric field can be more readily simulated at the surface of the piezoelectric 
material in contrast to the electric displacement boundary condition. Frequently used in the laboratory is 
Case I in eq. (16). 
 
4.3 PZT-5H piezoceramic 
A glance of eqs. (16) to (19) reveals that only three constants c44 , e15 and 11∈  are involved for the anti-shear 
problem. Their numerical values for the lead zirconate titante (PZT-5H) piezoceramic can be found in Table 
2 [14]. 
 
 

TABLE 2 
 Constants of PZT-5H piezoceramic [14] 

 
c44 (N/m2)      e15 (C/m2)     11∈  (C/Vm2) 
3.53×1010       17.0          151×10-10 
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Figure 2: Normalized energy density factor versus E∞/τ∞  Figure 3: Normalized energy density factor versus D∞/γ∞ 
 

Plotted in Fig. 2 are the variations of the normalized volume energy density factor S  with 
the load parameter E

)c4/a/( 44
2

c ∞τ

∞/τ∞. In general, the curve rises as pτ is increased positively or negatively; it possesses 
a minimum for negative pτ very close to the origin. On physical grounds, the crack driving force 
represented by S would increase with increasing applied electric field. Similar results are obtained for 

 versus D)4/a/(S 44
2

c ∈γ∞ ∞/γ∞ as shown in Fig. 3 where the minimum corresponds to positive qτ near the 
origin. As it is to be expected, S increases for positive and negative applied electric displacements. The 
trends of the curves in Figs. 2 and 3 are opposite to those found in [5] by using the energy release rate 
criterion where the crack driving forces decrease and become negative when the applied electric field and 
displacement are increased. This is contrary to experimental observations. 
 
Refering to the material parameters in Table 2, it can be seen that 11∈  is several orders of magnitude 
smaller than c44 in eq. (27) for Case III. Hence, S would remain nearly constant and not affected by the ratio 
E∞/γ∞. Case IV in eq. (19) yields a symmetric curve about qτ = 0 for the S versus qτ plot. The mixed 
conditions in eqs. (18) and (19) are only of academic interest since they are difficult to produce in the 

  



laboratory. 
 
5. CONCLUSIONS 
 
Anti-plane shear crack initiation behavior for piezoceramics is investigated to study the electro-mechanical 
interaction effects. Applied is the volume energy density criterion for analyzing how different boundary 
conditions would affect the crack driving force which remains positive definite under all conditions. This is 
a necessary requirement that must be satisfied on physical grounds. Numerical results are presented 
graphically for the PZT-5H piezoelectric material. These conclusions are contrary to those obtained from 
the energy release rate criterion [5] for the same problem. The crack energy release rate becomes negative 
as the electric field or displacement is increased, a condition that seems to contradict rational reasoning. In 
other words, it is inconceivable that a crack would arrest if the applied electric and/or mechanical load is 
increased. These unphysical predictions invalidate the usefulness of the energy release rate. Such 
contradictions do not arise when the volume energy density criterion is used. 
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