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ABSTRACT 
 
In this article, initiation and subcritical growth of surface cracks in graded materials due to sliding contact is 
considered. The investigation of the crack initiation process requires the evaluation of tensile cleavage stress 
on the surface, whereas subcritical crack growth is generally controlled by the stress intensity factors. After a 
brief introduction, the coupled crack/contact problem for a semi-infinite graded medium loaded by a rigid 
stamp is outlined, the stress intensity factors are calculated and some sample results are presented. 
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INTRODUCTION 
 
Graded materials, also known as functionally graded materials (FGMs) are multiphase composites with 
continuously varying volume fractions and, consequently, thermomechanical properties. Used as coatings 
and interfacial zones they reduce the stresses resulting from the material property mismatch, increase the 
bonding strength, improve surface properties and provide protection against adverse thermal and chemical 
environments. Many of the present and potential applications of graded materials involve contact problems. 
These are mostly load transfer problems in deformable solids, generally in the presence of friction. In such 
applications the concept of material property grading appears to be ideally suitable to improve the surface 
properties and wear resistance of the components that are in contact. From the standpoint of failure 
mechanics an important aspect of contact problems is surface cracking which is caused by friction forces and 
which invariably leads to fretting fatigue. In most applications material property grading near the surfaces is 
used as a substitute for ceramic coatings. Hence, the surface of the composite medium consists of one 
hundred percent ceramic. As a result the “maximum tensile stress” criterion may be used for crack initiation 
on the surface. The main objective of this study is to investigate the problem of contact mechanics and the 
associated fracture phenomenon in graded materials subjected to repeated loading by a rigid stamp. In 
particular the influence of the coefficient of friction and the material nonhomogeneity parameters on the 
stress intensity factors is examined. The problem is considered under the assumptions of plane strain and 
Coulomb friction. 
 
Studies in contact mechanics were originated by Hertz [1]. A thorough description of the underlying solid 
mechanics problems in homogeneous materials maybe found for example in [2]. Sample results for 



frictionless contact problems in a semi-infinite graded medium are given in [3]-[5]. The details of the 
analysis of contact mechanics for elastic solids with graded coatings and extensive results regarding the 
stress distribution are discussed in [6]. 
 
 
FORMULATION OF SLIDING CONTACT/CRACK PROBLEMS 
 
The general description of a sliding contact/crack problem in a graded medium is shown in Figure 1. 
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Figure 1: The general description of the crack/contact problem in a graded medium 
 

The load is applied through a rigid stamp of arbitrary profile and it is assumed that the conditions of plane 
strain and Coulomb friction are valid and h d h a h>> >> >>, ,   b

ud mplic
 where h  is the thickness of the medium. 

Thus, the graded medium may be treated as being semi-infinite. In this y for si ity it is further 
assumed that the shear modulus of the medium may be approximated by 

st
µ µ γx xbg bg= 0 exp  and the effect of 

the variation of Poisson’s ratio ν  on such quantities as stress intensity factors is negligible [7]. In the 
coupled crack/contact problem described in Figure 1 the unknown functions are the crack surface 
displacements and the contact stresses defined by 
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where η  is the coefficient of friction, κ ν= −3 4  for plane strain and κ ν ν= − +3 1b gb g/  for plane stress. 
The input functions are the crack surface tractions and the stamp profile given by 
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By using the equations of elasticity and the definitions given by 1-5, the mixed boundary value problem 
described in Figure 1 may be reduced to a system of singular integral equations of the following form: 



1 1 011 1 13 3π t x
k x t f t dt k x t f t dt

a

b

c

d

−
+FHG IKJ +zz , ,b g bg b gbg = , c x d< < ,    (6) 

 
1 1 022 2 23 3π t x

k x t f t dt k x t f t dt
a

b

c

d

−
+FHG IKJ +zz , ,b g bg b gbg = , c x d< < ,    (7) 

 

k y t f t k y t f t dt
t y

k y t f t dt f y f y
a

b

c

d
31 1 32 2 33 3 3

1 1 1
1

, , ,b gbg b gbgc h b g bg bg b ,g+ + −
−

+
F
HG

I
KJ −

−
+

=zz π
η κ

κ
  

 
   (8) a y b< < ,

 

f t dt
c

d
1 0bg =z ,          (9) f t dt

c

d
2 0bg =z , f t dt P

a

b

3bg = −z .

 
From Eqns. 6-8 the singular behavior of the unknown functions ,  and  is determined by using a 
function-theoretic method. The limiting case of a c

f1 f2 f3
= = 0  is of some theoretical and physical interest. In this 

case by defining 
 

f t t d t g t1 1bg b g bg= −α δ ,   f t t d t g t2 2bg b g bg= −α δ ,   f t t b t g t3 3bg b g bg= −α β ,         (10) 
 

the condition of boundedness of σ yy x,0b g, σ xy x,0b g, 0 < <x d  and f ybg,  0 < <y b  would give the 
following characteristic equations to determine δ β,   and α  
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One may note that these results are independent of µ0  and the material nonhomogeneity constant γ  and 
dependent on η  and κ  only, meaning that the stress singularities for graded and homogeneous materials are 
identical. Generally the contact stresses are concentrated toward the trailing end of the stamp. For c  it 
may easily be shown that [6] 

> 0
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Note that for η > 0  the stress singularity at y a=  is greater than that at y b= . The powers of singularity at 

 for ,  as well as at 0 for a b c, ,   and d c > 0 a > 0 a c= = 0  are shown in Figure 2 as functions of the friction 
coefficient η . From the standpoint of cracking η > 0  is the physically meaningful case for which α  is real 
and, for high values of η , can be greater than the corresponding uncracked value ω . This unusual result 
given by Eqn. 12 has also been verified independently by using Mellin transforms. 
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               Figure 2: Variation of exponents α , ω  and β  with friction coefficient η  
 

From Eqns. 7-9 it may be observed that the characteristic roots δ θ β ω, , ,    and α  are multiple valued. The 
particular values of these exponents within the acceptable range − +1,  1b g are determined from physical 
considerations. For the crack δ = −1 2/  and θ = −1 2/  for  and c > 0 θ = 0  for c . For a c= 0 = = 0  and 
η > 0  the dominant (and acceptable) root of Eqn. 12 is real and α < 0 . In the general stamp problem at an 
end point  (or b ) a ω  (or β ) is positive if the contact is smooth and negative if the stamp has a sharp corner 
[6]. 

 
Once the exponents δ θ β ω, , ,    and α  are determined the weight functions w ribg and the form of the 
solution of the integral equations may be obtained by normalizing the intervals a t  and b< < c t d< <  to 
− < <1 1r  and by expressing the unknown functions as (see Eqns. 1-3 and 6-8) 
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where  are the Jacobi polynomials associated with the weight functions  and  are unknown 
coefficients (

Pn w j Cin
j = 1, , 2  3 ). In the general form given by Eqn. 14 it is assumed that  (and c > 0 −∞ < < ∞a ). 

In the special cases of ( ) and (c a= = 0 c a= >0, 0 ) we have (θ α ω α= ,  = ) and (θ = 0 ), respectively. 
The integral equations are solved by truncating the series in Eqn. 14 and by using a suitable numerical 
method. After solving the integral equations, the a ties of physical interest, namely the stress intensity 
factors and the in-plane stress on the surface 
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where  and  are the modes I and II stress intensity factors and ,  and  are known kernels 
associated with the in-plane stress component 

k1 k2 h1 h2 h3
σ yy y0,b g. From the standpoint of crack initiation the critical 



point on the surface is the trailing end ( y a= ,  Figure 1) of the contact region where the cleavage stress 
σ θθθ r,b g is positive and may be obtained from  
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In the notation of Figure 1, from (17) it may be shown that θ cr = 0 , and σ σθθcr yy a= 0,b g. 

 
 

SAMPLE RESULTS 
 
Some sample results giving the modes I and II stress intensity factors for a graded medium containing a 
surface crack of length d  and subjected to a sliding rigid flat stamp hown in Figure 3. (Figure 1,  are s c = 0 ). 
The stiffness variation of the medium is given by µ µ γx xbg bg= 0 exp . On the top row of Figure 3 the full 
lines are obtained from the FGM solution for γd = 0 0001. , whereas the closed circles are given by the 
corresponding homogeneous medium. The results clearly show the strong influence of the stamp location 

 and the material inhomogeneity parameter γd  on the stress intensity factors. Note that, as formulated 
the problem is one of mixed-mode. Consequently, crack growth would be curved. Also, in the absence of 
additional in-plane tension,  could be negative, implying crack closure which can be treated in a 
straightforward fashion. 
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Figure 3: Stress intensity factors in an FGM half-plane with a surface crack loaded by a rigid stamp (Figure 
1, c ), = 0 κ = 2,  η = 0 4. ,  b ab 01  .

 
 



For a graded medium th bsence of a crack and loaded by a sliding flat am the normal component of 
the contact stress 

in e a st p 
σ xx y0,b g,  and the in-plane surface stress a y b< < , σ yy y0,b g, , are given in 

Figure 4 for various values of 
−∞ < < ∞y

γ  and for η = 0  and for η = 0 4. .  Note that for η = 0  the stress distribution is 
symmetric, whereas for η > 0  ω β>  and the stresses are concentrated near the trailing end y a= .  Also, at 

 y a= σ yy y0,b g has a singularity of the order a y−b gω , implying that y a= ,  is a likely location of crack 
initiation. 
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Figure 4: The contact stressσ xx y0,b g and the in-plane stress σ yy y0,b g on the surface of a graded medium 
loaded by a flat stamp. 
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