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ABSTRACT 

 
A continuum approach based on qualitative micro-structural physics and thermodynamic arguments 
has been elaborated for modeling of such interactive phenomena as yelding, thixotropy, nonlinear 
viscoelasticity, frozen memory, and stress localization. This type of modeling has been successfully 
applied to various systems, such as coagulating suspensions, highly filled polymers, concentrated 
solutions of surfactants, and elasto-viscoplasticity in metals. The mutual feature in these systems is 
the presence of a specific “structure” at rest, which can be destroyed at higher stresses and restored 
again after any type of unloading. Examples of this type modeling are presented in this paper. Several 
comparisons of calculations with experimental data will also be demonstrated in presentation. 
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INTRODUCTION 

 
Many two-phase systems with small attractive colloidal particles display a peculiar mechanical 
behavior when the particle concentration is above a certain “gelation” (or a percolation) threshold. A 
simplest class of such systems is dispersions where solid colloidal particles with inter-particle 
attractive interaction are dispersed in a low molecular weight fluid. Many of them, such as 
lubricating greases, inks, pastes, foodstuffs, coal-water, and clay-water systems are of considerable 
industrial significance. Because of the attractive interactions, dispersions can create a particulate 
network, which is usually ruptured in flow with formation of “flocs”, and restored again at rest. The 
general approach presented below, was successfully applied to dispersed systems in [1]. The filled 
polymers represent another example of such a system. They include a broad variety of cured and 
uncured rubber compounds employed in rubber and tire industries, as well as the micro-gels used in 
electronics. Here, depending on the type of polymer and filler, a dominant physical bonding can 
happen either between small particles of filler or between filler and polymer matrix. Again, this 
secondary network existing at rest can be destroyed by stresses, with a long restoration after 
unloading. Examples of our modeling of uncured systems are given in [2,3]. The third class of the 
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phenomena to which the general approach has been applied is the elasto-viscoplasticity in metals [4]. 
Here, beyond a critical (yielding) level of stresses, a sharp and time dependent transition from elastic 
behavior to plastic flow occurs in active loading, caused by the sliding of metallic “grains” along 
multiple dislocation lines. Also, a long time stress-strain relaxation with restoration of structure, its 
hardening, stress localization, and frozen memory effects happen in metals. Finally, the same 
approach with few modifications can also be employed to describe the rheological behavior of the 
concentrated solutions of worm-like micelles. Here, the long chains of micelles with relatively strong 
but still secondary inter-micelle forces present the structure. At low stresses, the system behaves as a 
polymer-like viscoelastic liquid, but at higher stresses, the chains of micelles are destroyed being 
restored again in any type of unloading [5]. No yielding exists in this system.  
 
 
BODY OF PAPER 
 
We demonstrate below the basic principles of the approach and its applications to the above four 

systems. For the sake of simplicity only the case of simple shearing with small viscoelastic 
deformations is considered. The general 3D approach with a complete geometric nonlinearity has 
also been developed and presented in the cited papers, where the comparison was made between 
calculations and data. 
 
Basic Principles and Formulation 
It is easy to illustrate the basic principles of the approach on the example of colloidal suspensions 

in viscous or viscoelastic liquid with interparticle attractive interactions. These interactions are of 
two major types.  
(i) Direct attractive interactions, which create the particulate network and flocs. These interactions 
being elastic before yield and viscoelastic beyond it produce a specific macroscopic viscoelastic 
shear sub-stress ppp G γσ = . Here Gp is the elastic modulus and  is the small (visco-) elastic 
strain. Two relaxation times are important here: a lifetime of flocs 

γ p

pθ , and a restructuring time 
)( poo θθθ ≥ during unloading. 

(ii) Hydrodynamic interaction between the flocs, as in a suspension of inactive particles, produces 
another type of sub-stress, mσ , which depends on the rheological properties of matrix and such 
important parameters of suspension as particle concentration ϕ  and size d. If the suspending matrix 
is a low molecular liquid, then γησ &mm = , where mη ( ), dϕ is the suspension viscosity. The function 

mη ( ), dϕ  is approximately known from the rheology of suspension of inactive particles (see 
discussion in [2]). If the suspending matrix is a polymer liquid, the sub-stress mσ  is of viscoelastic 
nature (see details in [2,3]). 
 
The total macroscopic shear stress σ  is then represented as the sum of   pσ and mσ . These are 

viewed as the contributions in the stress arising from specific matrix and particulate sub-media, or 
“modes” [2]. For high concentrated colloidal suspensions in low molecular matrices, the 
contribution mσ  in the total stress is negligible. Then the approach in this limit will also valid for 
the case of the elasto-viscoplasticity of metals [4]. Additionally, the normalized debonding factor ξ  

)10( ≤≤ ξ should also be introduced to characterize the process of rupture/restoration of flocs.  
 
The formulation of the constitutive equations is then as follows [1,2]: 
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      mppG σγσ +=  ( γησ &mm = ) ;     γθγξγ && =+ /)( pp f ;       */)1( γθγξξξθ && −=+o           (1,2,3) 

 
Here γ&  is the shear rate. Eqn.2 describes the evolution of elastic strain pγ , and kinetic equation 3 
describes the evolution of  the debonding factor  ξ . The mobility function )(ξf  in Eqn.2 describes 
the effect of the floc rupture/restoration on the rheological properties of particulatee mode. The 
properties of )(ξf  are assumed as follows: 

 
                               1. ),(<   ;0  ,  ;0)(' ),( 10 →∞→→→> ξξξξ ffffff                                  (4) 

 
When the behavior of00 =f 0near  )( =ξξf  is assumed as: 

 
                                                      0  ),( →+= ξξξ of .                                                              (4a) 

 
An example of (ad hoc) specification which captures the properties shown in Eqns.4 and 4a for )(ξf , 
is proposed as:  
 

                                                0),(    )exp()()( ≥+= ββξξξ kkff o .                                            (5) 
 
Two asymptotic cases of Eqn.5, (i) 0 ,1 =≈ kfo and (ii) 1 ,0 == kfo , are considered below. The 
physical sense of Eqns.1-5 is easy to illustrate on the simple situation when contribution of the 
matrix mode in the stress is negligible, i.e. ppG γσ ≈ . This situation also describes the effects of 
elasto-viscoplasticity in metals and rheology of worm-like micelles. 
 
1.  The particulate mode in Eqns.1, 2 has a viscoelastic character, since it has elastic properties (due 
to attractive inter-particle interaction) and quasi-viscous properties (due to floc rupturing under stress 
action). The effective relaxation time in Eqn.2, )(/* ξθθ f= , decreases with the increase in 
debonding factor ξ , i.e. with the floc rupture. Thus )(ξf should be an increasing function ofξ . In 
accordance with Eqn.4, parameter θ /f1  has the sense of the ultimate viscoelastic relaxation time in 
the mode, when the flocs are completely ruptured. The parameter  in Eqn.4 reflects the importance 
of fluctuations in the floc network at rest. If  ∼ 1, the system at rest has a viscoelastic character 
with initial relaxation time 

of

of
)/(  1fθθ > . This can describe the rheology of worm-like micelles. On the 

contrary, if <<1, the value of  can be neglected and the floc network can be considered as 
“rigid”. This is the case of dispersed systems in low molecular matrices, filled polymers and elasto-
viscoplasticity, with yielding and sharp transition from solid-like behavior to flow. To guarantee the 
occurrence of such a sharp transition with yield behavior, the assumption shown in Eqn.4a is made 
about the behavior of 

of of

)(ξf  in the vicinity ξ  = 0.  
 
2. The phenomenological equation 3 is proposed here to capture the essence of the process of flocs 
rupturing and restoration. Here *γ  is the critical value of pγ at which the intensive de-bonding 
process starts. When Eqn.4a is applicable, the parameter *γ  is associated with the elastic 
deformation at yielding point. It is easy to prove that Eqn.3 preserves the constraint 1)(0 ≤≤ tξ . In 
thermodynamic interpretation [2] of floc de-bonding/re-bonding, the factor ξ  is proportional to the 
free energy stored in flocs, oθξ / is proportional to the rate of dissipation due to de-bonding and the 
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right-hand side of Eqn.3 is proportional to the average rate of work done by fluctuating micro-
stresses on critical deformation *γ  [1,2]. 

ˆ, kG

(α

tσ

const

ˆ  , σ

 
3. For filled polymers, the matrix mode is viscoelastic and contributes a lot in the stress. Two cases 
are important here. 
  3a) In the simplest case, where the filler/filler interactions predominate, one can use along with 
Eqns.1-4, the multi-mode viscoelastic constitutive equations (Ces) for polymeric matrix. In our 
simplified case, these are the sum of linear Maxwell type modes with the relaxation spectrum 

. Since the matrix mode is treated as a suspension of inactive particles in a polymer melt (or 
elastomer), there is the scaling relation [2] 
{ $ , $ }θk kG

 
                                             { ={}ˆ

kθ }, χθ kk G ,   ),( dϕχχ =                                                  (6) 
 

between the matrix’s viscoelastic spectrum and that for the pure polymer, { }, kk Gθ . The SBR 
elastomer filled with surface treated silica particles is an example of such a system.  
   3b) When the particle/polymer interactions predominate, more complicated particle/polymer 
secondary network and related flocs arise in the compound. At any instant, the polymer chains are 
classified here as either free or trapped to the particles; the total stress in the compound being the 
sum of the stresses in the two types of chains. During flow it is assumed that there is a dynamic 
balance between two competing structural processes - the debonding trapped chains from the 
particles, and the entrapment of free chains to the filler particles. The hydrodynamic effects of flow 
around the particles are lumped as in the case 3a), in the response of the free chains. The well-
known examples of such compounds are the carbon black filled elastomers compounds [3]: 
 
                                 )1/() αξγσ ++= ff G ; )1/()1( αξγσ +−= tt G ;                                    (7) 
 
                                 fσσ += ,  γθγγ && =+ /ff ;  γθγξγ && =+ /)( tt f .                                   (8)         
 
Here )or ( and )or( tftf γγσσ  are stresses and elastic strains for free (trapped) chains. Also, the 
kinetic equation 3 with θθ =o  was assumed to be valid for every relaxation mode, with parameter 

*γ  being mode independent.  The total stress is then represented as the sum of stresses over all the 
relaxation modes. Comparisons between calculations based on a completely nonlinear formulation 
and some data for uncured rubber compounds have been made [3]. 
 
Qualitative Predictions 
We now illustrate the basic predictions of the approach on the simple example of the Eqns.1-3 with 
the use of Eqn.5, when the matrix sub-stress is negligible, i.e. when ppG γσ ≈ .  
 
1. Steady shearing.  Here =γ&  and the solution of Eqns.2, 3, 5 can be found as follows: 
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Here )/(ˆ *γσσ pG= . Eqn.9 displays a non-dimensional flow curve )(ˆ zσ . Its non-Newtonian 
character is due to the floc rupture. Consider now two cases have been discussed above. 
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(i)  When , , the asymptotic behavior of the flow curve at both the small and large shear 
rates is Newtonian. The maximum viscosity, 

1=of 0 =k
θη po G= , is reached at 0→γ& , and minimum 

viscosity, , at β−eη∞ = oη ∞→γ& . If the numerical parameter β  is large enough ( )2>β , the flow 
curve is non-monotonous, which predicts the occurrence of the stress localization. This behavior is 
similar to that known for worm-like micelles [5]. 
When  the asymptotic behavior of the flow curve at 0,   1,of k= = 0γ →&  is viscoplastic, i.e: 

, with the yield value, Y =)1ˆ 2+=σ ()1( zOz +− β *γpG , and the Bingham plastic viscosity, 
θβη pG)1−p (= . When γ →∞& , the asymptotic behavior of flow curve is Newtonian with the limit 

viscosity, . When β−θη∞ = eG p ,1>β  this model also predicts the occurrence of the stress 
localization near the yield stress. This behavior is similar to that known for dispersed systems [1]. 
Thus this analysis shows that the model predicts the occurrence of yield value without any yield 
criteria. The mechanism for this has been demonstrated in [1,2,4] and will be discussed in detail in 
Subsection 4 below. 
 
2. Start up shearing from the rest state. Here the shear rate γ& is constant at t  A cumbersome 
transient solution for 

.0>
)(tσ  displays the well-known stress overshoot whose intensity increases and 

time location decreases with γ&  increasing. This demonstrates the effect thixotropy.  
 
3. Stress relaxation. We assume that an active loading was applied at 0<t  and at the instant 0=t  
the stress and de-bonding factor reached the values oσ and oξ . For the more interesting case (ii), the 
model prediction of relaxation is:  

 

                             o-t// ;    = exp [exp( ) ]ot o
o o oe θ βξθ θξ ξ σ σ βξ

βθ
−− e e −

= − − 
 

.                                     (10) 

 
Eqn.10 demonstrates the effect of incomplete relaxation (or “frozen memory”) at ∞→t . It is seen 
that the residual stress ∞σ decreases with the increase in oξ . It happens since the rate of relaxation is 
higher when the flocs are more ruptured.  
 
4. Creep. We consider here only interesting case (ii), when a constant stress 0σ  is applied at t  
to the elasto-viscoplatic body initially at rest. Eqns.2, 3, 5ii always have the static solution:  

0>

 
                                                 0)(  ,/   ,0 ==== tG pop ξσγγγ& .                                              (11)      

 
It corresponds to the solid-like behavior. Another solution, describing the plastic behavior, may also 
exist. To find it, γ& is expressed at t > 0  from Eqn.2 as:  and substituted into 
Eqn.3. Then the problem is reduced to the initial problem for the kinetic equation 3 rewritten in the 
form: 

)/( θξσγ βξ
po Ge=&

  
                                     , .                            (12) )]1/(1ˆ)[1( ξσξξξθ βξ −−−= eo

& σξξ ˆ1)0( r
o e−−=≡

 
Here 1/ <= or θθ , Yo /ˆ σσ = , and *γpGY =  is the yield stress. Analysis of this problem reveals 

that depending on the value of parameter , the following behavior of σβξ ˆoeδ = )(tξ  happens at 
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∞→t . (i) If  1<δ , 0)( →tξ , and (ii) if ,1>δ  the solution goes at t  to a steady solution 
shown by Eqn.9. The case (i) is related to solid like behavior, and the case (ii), to the flow, and the 
transition between these is of a bifurcational type.  In the realistic case 

∞→

,1<<r  σδ ˆ≈ . It means that 
the bifurcation happens when the stress in creep is closed to the yield value, i.e. σ o Y≈ .  
 
 
CONCLUSION 

 
 The approach presented in this paper, demonstrates many mutual features peculiar for such different 
systems as colloidal dispersions, filled polymers, worm-like micelles and metals. It was shown that 
in these systems, a simple and flexible kinetic model could capture common rheological effects, 
such as yielding, thixotropy, viscoelasticity, frozen memory, and stress localization. The key element 
in this model is the coupling between a specific kinetic equation, which describes the 
rupture/restoration of a “structure”, and the equation of viscoelastic type for stress evolution. The 
remarkable feature of this approach is that it describes yielding as a bifurcation in the transition from 
solid-like behavior to flow. This gives this approach a computational advantage over those which 
employ an algebraic yield criterion, especially when solving complicated 3D problems.  
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