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ABSTRACT

This paper demonstrates the use of fracture mechanics based strength criteria and optimization tech-
niques in the design of fibre-reinforced laminate configurations against cracking. The optimum config-
urations are sought for multidirectional fibre-reinforced composite laminates under combined in-plane
mechanical and thermal loads. The design objective is to enhance the value of the loads corresponding
to the first-ply-failure as judged by a transverse failure criterion which contains the in situ strength
parameters proposed by the authors. The highly nonlinear optimization problems are solved using
nonlinear programming incorporating a local-global algorithm of Elwakeil and Arora. It is found that
the optimum designs under combined mechanical and thermal loads are not the same as those under
pure mechanical loads for three of the four loading cases studied. For all cases the cracking loads are
increased several fold in comparison with randomly chosen initial designs. The local-global algorithm
can generally improve the computational efficiency of the pure multistart method for the considered
optimum strength design of composite laminates.
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INTRODUCTION

Most matrices of the advanced composite materials are brittle. They are prone to cracking under very
low applied stresses. Cracking not only reduces the overall stiffness, but it can lead to disastrous fail-
ure of containers due to leakage. Another characteristic of these composite materials is their design
tailorability. For this reason, a composite material or structure can be optimized, for given load condi-
tions, in terms of one or a combination of the following properties: weight, stiffness, strength, toughness,



maximization for given material properties and volume, inevitably involve complicated fracture me-
chanics and/or failure analysis of heterogeneous materials. For this reason, the strength maximization
of composite materials has not been as widely studied rigorously as the weight minimization, although
optimum strength designs of continuous fibre-reinforced composite laminates have been pursued since
the early days of these materials [1,2,3,4,5]. Daniel and Ishai [6] give an optimum design example of a
composite material structure — the design of a pressure vessel based upon Tsai-Wu failure criterion and
first-ply-failure.

The current failure criteria for fibre-reinforced composite laminates use the basic strength parameters
that are measured using a unidirectional lamina (e.g. Daniel and Ishai [6]). Thus the configuration of a
multidirectional laminate only influences the stress distribution in the multidirectional laminate. How-
ever, it 1s found that the transverse tensile and shear failure stresses of a unidirectional lamina depend
upon the laminate configuration and the lamina thickness. This means that the conventional failure
criteria need to be modified. They need to include the in situ strength parameters [7.8]. Moreover, in
measuring the in situ transverse strength of unidirectional laminae in laminates, it was found by Flaggs
and Kural [7] that the thermal residual stress resulting from the manufacturing process might consist
of a large portion of the in situ strength (more than half for [0,/90,]s; and [£30/90,]s for n = 1,2, ..., 8).
A composite structure will also experience temperature variations in service. Because of the remarkable
difference in the thermal expansion coefficients as well as the stiffnesses of a unidirectional lamina in
its longitudinal and transverse directions, the stresses caused by temperature variations may be quite
significant in practice. It is obvious that the thermal stresses in a multidirectional laminate are functions
of the laminate configuration, that is, functions of the ply angles in the laminate.

Given that most advanced fibre-reinforced composite laminates are prone to cracking and delamina-
tion but that the properties of laminates can be tailored, the present authors have attempted to apply
fracture mechanics and optimization techniques to the optimum strength design of fibre-reinforced
multidirectional composite laminates (Wang and Karihaloo [9,10,11,12,13]. It is well-known that op-
timization problems of composite laminates are highly nonlinear. The consideration of the in situ
strength parameters complicates the problem. In the present paper, we shall demonstrate the optimum
in situ strength design of multidirectional composite laminates subjected to combined mechanical and
thermal loads. We shall first introduce the in situ strength parameters, and then incorporate them
into the formalism of optimization problems. The optimization problems will be solved by a nonlinear
mathematical programming technique incoporating the local-global algorithm proposed by Elwakeil and

Arora [14].

IN SITU STRENGTH PARAMETERS

It has been observed in tests that the transverse tensile and shear strengths of a continuous fibre-
reinforced unidirectional lamina, when situated in a multidirectional laminate, are functions of the
thickness of the lamina itself and the ply angles of its neighbouring laminae (e.g. Flaggs and Kural
[9]; Chang and Chen [15]). These strengths of a lamina in a laminate are generally larger than those
measured using a thick unidirectional laminate. As a consequence, it is recognised that the transverse
and in-plane shear strengths of a lamina cannot be regarded as its intrinsic property. Because of this
observation, these strengths of a lamina are referred as in situ strengths, when the lamina is situated
in a multidirectional laminate.

Chang and Lessard [8] proposed two formulas to calculate the in situ transverse and shear strengths by
fitting experimental data
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where Y2 and S are the transverse tensile strength and in-plane shear strength measured with a thick
unidirectional lamina. A, B, ' and D are to be determined by experiments. N is the number of
unidirectional laminae in a multidirectional laminate. A# represent the minimum difference between
the ply angle of a lamina and those of its neighbouring plies.

Wang and Karihaloo [10] studied the physics of the phenomenon of in situ strengths using fracture
mechanics. Based upon the fracture mechanics analysis, they proposed two formulas to calculate the
in situ strengths
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Here, the two functions fi(Af) and f;(Af) represent the influence of the neighbouring laminae on the
strengths of a lamina. They are given by
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The parameters A, B, C' and D in eqns. 3-4 are to be determined from experimental results. As these
formulae also contain the ply angle influence functions, i.e. fi(A#) and f;(Af), the investigation of the
dependence of A, B, ' and D on the laminate configuration is very important. Their dependence upon
the laminate configuration is discussed by Wang and Karihaloo [13].

In Figure 1, the in situ transverse strength predicted by eqns (1) and (3) are compared with the ex-
perimental results of Flaggs and Kural [7] for the material T300/934. In fitting the experimental data,
different values of A are used in eqns (1) and (3) (1.7 and 3.4, respectively). Chang & Lessard [8] used
A =1.3 and B = 0.8 previously to fit the experimental data. It is seen that both of the theoretical for-
mulas fit the experimental data reasonably well. The most important conclusion drawn from Figure 1 is
that for the material and laminate configurations studied by Flaggs & Kural [7], the parameters A and
B appear to be independent of the laminate configuration. They can therefore be treated as material
constants. On the other hand, due to lack of experimental data, the dependence of the parameters C'
and D on the laminate configuration can not be judged. Chang & Lessard [8] found that formula (2) fits
the experimental data well for T300/976 cross-ply laminates with D = 2.0 and C' = 1.0 In the sequel,
we shall use formula (3), which has a fracture mechanics basis, to calculate the in situ shear strength
of laminae in multidirectional laminates with ¢' = 4.0 and D = 1.0.

In most cases, transverse cracking is the first noticeable damage in a laminate. Although the transverse
cracks generally do not result in the immediate failure of the whole laminate, they have the potential
to induce failure by stress concentration and delamination. In the optimum strength design to follow,
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Figure 1: Comparison of theoretical and experimental results of the in situ transverse tensile

strength. A = 3.4 and B = 0.8 are used in formula (1) (after Wang and Karihaloo [13]).

we shall use a transverse tensile failure criterion [8] to judge the transverse failure of a unidirectional
lamina in a multidirectional laminate. This criterion, into which the in situ strengths are incorporated,

is written as , ,

@ = (%) + (Sﬁ) <1, (i=1,2,...,1) (7)

where YV and S are the in-plane transverse and shear stresses in the lamina. L is the total number of
unidirectional laminae in the laminate.

OPTIMUM DESIGN

For a composite laminate under given in-plane loads, if the ply angles and thicknesses of the constituent
laminae are so chosen that the values of ¢? for all laminae are reduced, then the loads corresponding
to the transverse cracking or failure will be enhanced. This objective is achieved by minimizing the
maximum value of ¢?. Following the procedure in the work by Wang and Karihaloo [11], the optimization
problem is formulated as

Min 7 (8)
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The optimization problem (8) is highly nonlinear with multiple local minima making the search for
the global minimum difficult. Therefore, the above optimization problem is solved using nonlinear pro-
gramming (constrained variable metric method) in conjunction with the so-called domain elimination
method for global optimization proposed by Elwakeil and Arora [14].

The above optimization procedure was applied to the optimum design of an 8-ply symmetric multidi-
rectional laminate (84/.../61)s. The stiffness and strength constants used in the calculation of the in situ
strengths are adapted from the work by Chang and Lessard [8] on T300/976. The thermal expansion
coefficients are taken as those of T300/934 [7], i.e. ar = 0.09 ustrain/°C, ar = 28.8 ustrain/°C. The
thickness of a single ply is assumed to be 0.14 mm. The temperature variation is taken as AT = —147°C,
i.e. the temperature drop in the manufacturing process [7]. It can be arbitrary otherwise. Given a
mechanical load [N, N?, Nf], the improvement in the design is represented by

1

b
max g;

k=

(i=1,2,....4) (13)

The results of optimization with respect to the failure criterion (7) are shown in Figure 2 and Table 1.
Figure 2 shows the changes of the load factor k£ during the optimization process for four in-plane
loading combinations. Table 1 shows the initial, pseudo-randomly chosen guesses to ply angles, their
final optimum values, and the optimum load factor k...
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Figure 2: Evolution of load factor k for a symmetric laminate of 4 ply angles for four mechanical
loading cases without and with thermal effect: (a) [NY, N2, N9]T = [200,200,0]7 kN/m; (b)
[N?. NJ N2T = [200,0,200]7 kN /m; (c) [N2, N9, NJ]T = [400, 200, 0]7 kN /m; (d) [N?, NJ, N1 =
[200, 200, 200]7 kN /m.

It is seen from Figure 2 that for each of the loading cases (a), (b) and (c), the mechanical load corre-
sponding to the first-ply-failure in the optimally designed laminate is increased several fold compared



reached from many initial designs. It is hard to compare the results with and without thermal effect.
However, the authors have previously found that for loading cases (a), (b) and (c), the same initial
designs lead to different final designs for pure mechanical load and mixed mechanical and thermal load
(Wang and Karihaloo [13]). For loading case (d), there is a global optimum design, namely, the configu-
ration where all the ply angles are in the 45° direction. When the plies are so arranged, for the transverse
criterion (7), the absolute global minimum value of the objective function is identically zero. This min-
imum value is captured by the optimizer. In all designs, in order to reduce the value of the objective
function, the optimizer aims at reducing the transverse and in-plane shear stresses and distributing the
stress in the fibre direction of a lamina in the laminate. The optimizer always distributes the stresses
according to the strengths in different directions of the anisotropic material. An examination of the
elimination procedure described above shows that the efficiency of the local-global algorithm depends
upon the number of design variables, the elimination factor and the time taken to find a local minimum.

TABLE 1
SUMMARY OF OPTIMIZED PLY ANGLES IN A SYMMETRIC 8-PLY LAMINATE

without thermal effect with thermal effect
loading | Initial design | Final design Initial design | Final design
case 01,065,065, 04 01,05,03.04 | ki | 01,02,03,0,4 01,05,03.04 | ks
a -43,-52,-47.5 | -43,-86,-42,34 | 1.62 | -T4,-82,14,67 | -36,-61,-42,45 | 0.8
b -18,75,76,45 | -58,32,86,32 | 2.3 | -12,-34,40,13 | 32,-61,31,32 | 5.7
c -62,60,-82,63 | -36,50,-55,12 | 1.5 | -74,-69,59,87 | -44,51,-44,19 | 8.2
d 88,5,16,59 45,45,45,45 00 47,29,29,49 45,45,45,45 00
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