
COHESIVE-ZONE MODELING OF DEBOND GROWTH AT ADHESIVELY BONDED 

INTERFACES IN AGGRESSIVE ENVIRONMENTS 

Samit Roy*, D. Nagendra*,  and K.M. Liechti** 
*Mechanical Engineering Department, Oklahoma State University  
**Engineering Mechanics Department, University of Texas-Austin 

 
Abstract 
 
       In this study, a node-release algorithm based on a linear traction separation law was 

implemented in a test-bed finite element code that was developed to simulate normal (Mode I) 

and tangential (Mode II) crack growth at the interface.  The combined effects of nonlinear 

viscoelasticity, temperature cycles, and moisture diffusion in the adhesive layer and their 

influence on crack-growth rates are included in the model. The particular values of the parameters 

of the traction-separation law can be determined through comparison with crack opening 

displacement data from test specimens following an iterative procedure previously established. 

The effect of crack length on mode mix and the existence of asymmetric shielding mechanisms 

can be accurately assessed using this procedure. Some preliminary benchmark results are 

presented. 

 Bond Durability Modeling Approach 
 
  One of the primary objectives of the current study is to be able to model the synergistic 

bond degradation mechanisms at the adhesive-composite interface. The following sections 

describe the details of the synergistic modeling approach. 

Diffusion Controlled Crack Growth  

Environmental cracking in a polymer typically occurs in the presence of a penetrant, such as 

moisture, and stress. It has been postulated that the mechanism involved in environmental crack 

growth in a polymer involves a small zone of craze formation and/or plasticization at the crack tip 

due to stress-enhanced moisture ingress.  For the case of craze formation, Darcy’s law for 

diffusion in porous media can be used to predict crack (or craze zone) growth. However, for 

thermoset resins, such as epoxy, energy absorption at the crack tip is primarily by a shear yielding 

process and not by crazing. Consequently, for a thermoset epoxy, the zone of plasticization ahead 

of the crack tip must be determined using a diffusion law for non-porous media, such as Fick’s 

law. In the event of synergistic interaction between several processes, a crack will grow at the rate 

determined by the slowest controlling process and when this is diffusion, then there is diffusion-

controlled crack growth.  
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Free Volume Constitutive Model 

The free volume constitutive model [1,2] is based on the premise that the mechanical 

response of a viscoelastic polymer is dependent on the ability of its molecular chains to 

accommodate imposed deformations. Free volume may be conceptualized as the volume that is 

not occupied by the molecular chains in the material. Free volume is typically considered an 

indicator of molecular segmental mobility, where greater free volume provides the extra mobility 

needed to accommodate imposed deformations quickly.  

Studies of the variables influencing the time scale of viscoelastic materials have shown 

that temperature, solvent concentration  and mechanical dilatation all influence the time scale of 

the material in a similar manner. Hence the shift factor a(T,c,θ) can be represented as a function 

of temperature (T), solvent concentration (c) and mechanical dilatation (θ). Doolittle [3] defined a 

shift factor relating the fractional free volumes of a material at the current and reference states 

through the expression, 
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where,  B = a constant, f  = fractional free volume at the current state, f0 = fractional free volume 

at the reference state. Knauss and Emri [1,2] postulated the fractional free volume to depend on 

temperature (T), solvent concentration (c) and mechanical dilatation (θ). Therefore the fractional 

free volume can be expressed as, 

dctCtMBdTAff kk *)(.*)(.*.0 γσα +++=    (2) 

where, α(t) and γ(t) are the volume coefficients of thermal and moisture expansion. In general, 

α(t) and γ(t) are functions of T, c, the creep compliance M(t) is a function of θ(t), V0 is a reference 

volume, σkk is the first stress invariant, and A, B, C are constants to be determined. Note that the 

(*) notation used in eqn. (2) denotes Stieltjes convolutions representing the time history of the 

respective variables. For small changes in variables below the glass transition temperature of the 

polymer and the boiling point of the penetrant, it is assumed that α(t), γ(t) and M(t) are constants 

with respect to time. Further under such conditions, simple multiplicative relations can replace 

the convolutions in eqn. (2), giving, 

,0 δθγα +∆+∆+= cTff where kkεθ = , and δ  is a material constant  (3) 

Substituting eqn. (3) in eqn. (1) gives the nonlinear shift factor,  
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For negligible solvent concentrations and dilatation eqn. (4) reduces to the WLF equation. It was 

found from experimental data [4] that the value of δ was very close to unity, so henceforth the 

model assumes that δ = 1. In this model the nonlinear shift factor definition in eqn. (4) 

incorporates all the nonlinearity in the linear viscoelastic constitutive description of an isotropic 

solid under infinitesimal deformations. At reference conditions, the constitutive equations for a 

viscoelastic material are, 
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where sij and eij are components of deviatoric stress and strain tensors. The nonlinear set of 

equations (3) - (5) account for the temperature, solvent concentration, and dilatation histories and 

essentially comprise the free volume constitutive model. 

Cohesive Zone Model 

The cohesive zone interface model was developed by Needleman [5] in order to provide a 

unified description of crack initiation from initial debonding through complete separation and 

subsequent crack growth. The interface constitutive equation developed in the model was such 

that, with increasing interface separation, the traction across the interface of the crack reaches a 

maximum, decreases, and eventually vanishes so that complete decohesion occurs. The 

subsequent mechanical response of the crack is dependent on the strength of the interface, which 

is specified by the critical stress measure near the tip of the crack, and the work of separation per 

unit area. This interface model is based on the cohesive zone model developed by Dugdale and 

Barenblatt. Needleman introduces a characteristic length in order to determine the size of the 

cohesive zone where the tractions are to be applied, the equivalent of which is defined as the 

crack tip opening displacement in the Dugdale-Barenblatt model. The tractions at the interface are 

therefore a function of the crack tip opening displacement. Further investigations of crack growth 

in thin film blistering of polyimide film on aluminum substrate by Shirani and Liechti [6] made 

use of a simplified version of the Needleman interface model. In this case, the decay of tractions 

with the result of the traction separation law was simulated as non-linear softening springs 

attached to the nodes of the crack interface in the finite element model.  This method has been 

referred to as “nodal relaxation” by several authors [7,8,9] due to the gradual decrease in traction 

force rather than the immediate release of the node due to debonding. The dependence of the 
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tractions on the crack tip opening displacement is considered invariant with respect to quasi-static 

propagation in a controlled environment as specified by Ungsuwarungsri and Knauss [10].  The 

use of the traction separation law as improvised by Shirani and Liechti has been successfully 

incorporated into a test-bed (NOVA-3D) finite element code to analyze tensile decohesion for 

elastic structures in two and three-dimensional cases. In this model, attention is directed towards 

the interface close to the crack that supports a nominal traction field T (force/unit reference area), 

which in general, has both normal and shearing components. Two material points A and B may 

be chosen which were initially on opposite faces of the interface and the interfacial traction is 

taken to depend only on the displacement difference vector across the interface, . Thus at 

each point on the interface, we may define normal and tangential components of displacements 

and tractions,  
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where, Tn = normal component of traction, Tt = shear component of traction, and positive un 

corresponds to increasing interfacial separation. This dependence of the traction magnitude on the 

amount of the separation between the interfaces can be expressed in terms of a potential 

),( tn uuφ , which is defined as, 
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 As shown in Fig. 1, Needleman defined the model in such a way that as the interface 

separates, the magnitudes of the tractions increases, achieves a maximum and ultimately falls to 

zero when complete separation occurs. The model shown is defined for pure normal tractions on 

the interface with ut being zero. Needleman has proposed to define the traction-separation curve 

in terms of the potential as, 
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 where, σmax= maximum traction carried by the interface undergoing pure normal 

separation, and, δ  is a characteristic length. When un > δ  then sepφφ ≡ , where sepφ  is the work 

of separation. The interfacial tractions for pure normal separation may be obtained by 

differentiating eqn. (9) and setting ut=0 to give, 
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           Figure 1. Normal tractions across the crack interface as a function of normal displacements 
    

  The fracture energy (work of separation) is defined as the area under the curve in Figure 

1 and is given by, 

169 max δσφ =sep            (11) 

 For a given fracture energy based on the material and stress at the crack tip, the value of δ may 

be computed using eqn. (11).  

 Preliminary Benchmark Results 

Figure 2 depicts the strain energy release rate as a function of incremental crack length 

obtained from the analysis of an elastic Double Cantilever Beam (DCB) specimen employing the 

cohesive-zone crack growth model. The benchmark plot shows good agreement of the test-bed 

code (NOVA-3D) results when compared with crack growth data obtained from the commercial 

finite element code ABAQUS.  Synergistic interfacial crack growth modeling in the presence of  

diffusing penetrants, material nonlinearities, and adhesive viscoelastcity is currently underway.   
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Figure 2. Strain energy release rate vs. incremental crack length, DCB steel specimen, constant                                 
load test, P = 600 lb. 
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