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ABSTRACT

In this paper, we studied the stress singularities near tip of a two-dimension notch, which could be a crack
tip, formed from several elastic materials, each of them may be generally anisotropic. By introducing the
dual variables in the state space, the basic equations governing the posed problem were established. We also
proposed a numerical method to solve the governing equations. It was shown that the mathematical
formulations advanced are quite simple and the numerical method proposed is easy and highly accurate.
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1. INTRODUCTION

Knowledge about the stress concentration near the tip of a notch in anisotropic materials, or a crack as a
special case, has a particular importance. The fracture behaviors of such a structure may be interesting for
many engineering applications such as composites, crystals, welded structures or reinforced polymers etc. In
this topic, one can note the pioneering works of Stroh (1958), Sih et al. (1965) or Hoenig (1982) concerning
the asymptotic fields near a crack tip in homogenous orthotropic or general anisotropic materials. The next
studies were carried out in determining the near-tip fields when the crack lying at or touching an interface
between two anisotropic materials. Several basic crack problems have been solved (Gotoh, 1967, Clements,
1971, Willis, 1971, Delale and Erdogan, 1979, Ting and Hoang, 1984, Ting, 1986, Qu & Bassani, 1989, Suo,
1990, Gupta et al., 1992, Ting, 1996, Sung and Liou, 1996, Lin and Sung, 1997, Matntic ef al., 1997 among
others).

In all the studies mentioned above, the linear elastic anisotropy theory developed by Lekhnitskii (1953) and
Eshelby et al (1953) were essentially followed. This theory provides explicit results for some problems such
as cracks in homogenous materials or cracks lying at an interface etc. However, for more complex problems,
the methods provided by this theory leads to long and difficult mathematical formulations.

In this paper, we propose to study the stress singularities near the tip of a notch formed from several
generally anisotropic elastic materials. We will use, in this work, another methodology than that of
Lekhnitskii and Eshelby. This new methodology consists in introducing the Hamiltonian system and the
state space method into the continuum mechanics and has been successfully used in the reform of the
elasticity theory (Zhong, 1995). In this work, we deduced the governing equations allowing the
determination of the stress singularities and the asymptotic fields near the notch tip. The mathematical
formulation is quite simple comparing with those currently appeared in the literature. We also proposed a



numerical method to solve the governing equations. It has been shown that this numerical method is simple
and highly accurate.

2. GOVERNING EQUATIONS OF THE PROBLEM

Let consider a notch formed from several elastic anisotropic materials. We establish a Cartesian coordinate
system and a cylindrical coordinate system with their origins at the notch tip and the z-axis representing the
notch front. The material 1 occupies the sectorial domain [0¢,0,], named zone 1; the material 2 occupies the
zone 2, bounded by [0;,0:], and so on. Under remote loading, the stress concentration at the notch tip will
take a mixed mode nature due to the anisotropy of the materials.

First, we write the stress components in the Cartesian system and in the cylindrical system as
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corresponding strain components are € :{sx €, € Yy Y. Y yz} and
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€, = {sr € € Yo Yr Yo }T respectively. In the Cartesian system, each material has a homogeneous

and anisotropic elasticity:
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C,,- 1s the stiffness matrix of the material. All its components c;; (i, j = 1,6) are constant. In the cylindrical
system, the stress and the strain components can be obtained from their corresponding quantities in the
Cartesian system with a coordinate rotation, namely,

O-rez = Tco-xyz SVGZ = ngxyz (2)

where T, and T are the coordinate rotation matrices about the stresses and strains respectively. Therefore,
the stress-strain relationship in the cylindrical system is:
O-rez = Crezgrez
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This shows that in the cylindrical system, the stiffness matrix is not a constant matrix but a function of 6.
Hereafter we work exclusively in the cylindrical system, therefore the subscript ,4 will be omitted in order to
simplify the notations. At the present, we do not distinguish the different materials in the formulation.

We write now the fundamental equations of the anisotropic elasticity in the cylindrical system:

(a): The equilibrium equations: In the case when the stress components are independent of the z-axis, the
equilibrium equations are:
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We perform the following variable changes:
g=Inr  r=exp(e); ()

and
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Then by using the notation () = % , the equilibrium equations (5) can be rewritten as:

Sre :Se_% Se :_aS_re_Sre Sez :_aSrz (8)
o¢ o¢ o¢
We define the following variable vectors:
p = {SG SrG Sez }T pt = {Sr Sz Srz }T (9)

Hence, the equilibrium equations (8) can be rewritten as:
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where
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(b): The displacement-stress relationship: If the displacement components are independent of the z-axis, the
relations between the strain and displacement components are:
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By substituting (11) into (4) and by using the variable changes (6) and (7), one obtains:
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Similarly, we define a displacement vector
T
aj=tuo u, Wl (13)
By using the definitions (9) and (13), the relationship (12) can be rewritten as:
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In (17) the relationship C,, —C,,C,'C, =0 is used. Since the strain energy in solids is always positive,
consequently, Cy is a positively definite matrix. Therefore, the inversion of the matrix Cy is permitted

(c): The governing equations. By substituting equation (17) into the equilibrium equation (10), the variable
vector p, is eliminated. Then we obtain, from (10) and (16), the following dual equations that govern the
posed problem:
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In fact, it is more convenient to define a total vector v as variables in the state space:

S a e
such that the governing equations (19) become:
v = Hy (22)
with:
— Hll H12 (23)
H21 H22

(d): The boundary conditions and the continuity conditions: Referring to Fig.1, we adopt the superscript @ to
indicate the quantities in the zone i , for example, v, H?, etc.. The boundary conditions at the two free
surfaces of the notch are:

p"(©=6)=0 p"(©6=6,)=0 (24)
The continuity conditions across the interfaces are:
v 0=06,)= v 0=6,) - v 0=0,,)= v(n)(e =0,.,) (25)

These relations show the advantage of the choice of the dual variables in the present study: the multi-
material problem can be dealt with as a single material problem since the variable vector v is continuous
across all the interfaces. This makes much easier the resolution of the governing equation (22).

If we suppose the stress component o;=0, from the third equation of (4), one deduces the strain component
&
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Introducing (26) into (4) eliminates all components in the third colon and the third row of the stiffness
matrix C. The other components become:

Ci3€3;

cij (plane stress) = Cij - (27)
€33
By adapting this new stiffness matrix, all formulations deduced for the generalized plane strain can directly

be used for plane stress problems.

3. SOLUTION METHOD

By examining the governing equation (22), it is self-evident to try to solve it by using the variable separation
method. We suppose that the variable vector v(&, 0) can be written under separable form:

v(E,0) = exp(AS)y(6) (1)
where A is an undetermined eigenvalue, ¥(0) is a variable vector depending exclusively on 6. Then equation
(22) becomes:

y(6) = H(O)y (6) (32)
In (32), H is function of 0 only,
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The continuity conditions across the interfaces become:

P (0=0)=y"(0=0) - y"(0=6,,)=y"(0=6,,) (34)
We believe that equation (32) may be solved by different ways. In this work, we propose a numerical
method allowing the determination of the eigenvalue A and the corresponding eigenvector y(0). First, we
divide a zone, the zone i bounded by the interfaces 6=0,.;and 6=0; for example, into V; intervals of equal

angle size by inserting Ni—1 points. In each interval, we integrate (32) by using the trapezoidal
approximation:

H(0)= (33)
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where d is the interval size. From (35), we have:
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where I is a 6x6 unite matrix. Hence, we immediately obtain the relation between \yg\’,) andy !’ , namely:
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with:
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According to the continuity conditions (34), one has:
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vy =y (39)
Hence, we obtain the relation between y"(0=0,) andy™ (0 =0,), namely,
y"(0=0,)=Gy"(6=06,) (40)
with
1
G=]]G" (41)

In practice, the trapeze method provides quite a poor accuracy in calculation of G. The accuracy can
considerably be improved by using the Richardson extrapolation technique.

Now we write (40) in the form of the dual vectors ¢ and p:

fo=e)-|g: cxfipfe-o

Since p(0 = 0p) = p(0 = 0,) = {0}, from the second equation of (42), one has:
G,90=6,)=0 (43)
This leads to:
det(G,,) =0 (44)

Equation (44) is the condition required to determine the eigenvalues A. Iteration techniques for roots finding
can be used for the determination of A. In this work, the Muler method is used because it can generate
complex roots even if a real initial value of A is chosen, and vice-versa. Once the eigenvalues determined,
the vector ¢(6 = 0) is obtained from (43). Therefore, the boundary value problem posed becomes an initial
value problem. Any numerical method providing a good accuracy can be used for solving equation (32).
Otherwise the eigenvectors y can straightforwardly be given from (36), and all stress and displacement

components can easily be obtained from (31) and (17).

5. CONCLUSIONS

In this work, we have established the general equations governing the asymptotic fields near a notch tip
formed from several general anisotropic materials. These equations are expressed under the form of a system
of first-order differential equations, instead of a high-order differential equation of a single variable as in the
traditional methods. The dual variables chosen present important advantages in the resolution of the
problems because of their continuity across all the interfaces. A numerical method has been proposed to
solve the egeinvalue problem. This numerical method is simple and highly accurate comparing with results
obtained in other existing analytical solutions. Consequently, the present method enables us to deal with a
large range of problems in this topic with rather simple mathematical formulations and small numerical
effort. Since the new materials developed recently present a large field in which the modeling of the
anisotropy is important, we believe that the present work provides a new tool to study problems in this
domain.
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