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ABSTRACT 

 
In this paper, we present a new approach to consider the near-tip fields of a crack in elastic flat plate 

subjected to bending forces. The Reissner assumptions of the plate theory were adopted. By introducing the 
dual variable vectors in the state space, the governing equations were established in the frame of the 
Hamiltonian system. Following problems were solved by using the present approach: (1): Cracks in elastic 
homogeneous plates. (2): Cracks formed by several homogeneous plates. Interface cracks between two 
dissimilar plates and cracks meeting an interface between two elastic plates are two special cases of this 
problem. (3): Cracks in orthotropic plates. (4): Cracks formed by several orthotropic plates. This work shows 
the efficiency and the simplicity of the present theory in studying the crack-tip asymptotic fields in plates. 
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1. INTRODUCTION 
 
The principal theories studying the asymptotic fields near a crack tip in a plate loaded by bending forces 
were established in the 60’s of the precedent century (Sih, 1965, Knowels and Wnag, 1960, Hartranft and 
Sih, 1968, 1970 etc.). Some of them were established on the basis of Poisson-Kirchhoff’s thin plate theory, 
others on the basis of the Ressner theory. The Poisson-Kirchhoff theory provides rather simple mathematical 
procedures, but gives some physically incorrect behaviors about the near-tip fields. On the other hand, 
Ressner’s thin plate theory gives physically more reasonable results, but the solution of the six-order 
differential equations remains difficult for some problems posed in this topic.  
 
In this paper, we propose a new approach to find out asymptotic fields near a crack tip in thin plates loaded 
by bending. By choosing appropriate dual variables in the state space, we can establish the governing 
equations of the problem in the frame of the Hamiltonian system. All equations found are presented in the 
form of a system of first-order differential equations. Therefore, one can easily perform the separation of the 
variables and resolve the corresponding eigenvalue problems. The mathematical approaches are quite simple 
and a large range of problems in this domain can be dealt with. 
 
2. FUNTAMENTAL EQUATIONS  
 
Consider a semi-infinite crack in a thin elastic plate of thickness h. We adopt the hypothesis made by 
Reissner about the deformation of thin plates. (1): The strain and stress at the direction normal to the mid-
plane are neglected, i.e.: 
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(2): The in-plane displacements depend linearly on the thickness coordinate z: 
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Where ru~  and θu~ are functions independent of the z coordinate. We write now the equilibrium equations in 
the cylindrical coordinate system: 
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The relationships between the strain and displacement components are, according to assumption (2): 

According to the Hooke law, we can directly write the relationships between the displacement and stress 
components: 
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We multiply the three first equations by z then perform integration through the thickness. For the two last 
equations, we just perform integration. We obtain: 
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where k = 5/6 is a corrector constant in order to take the parabolic distribution of the shear stresses into 
account. Equation (3) and (6) are the fundamental equations we use in this work. The boundary conditions at 
the crack lips are written as following: 
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In order to solve these fundamental equations, we perform the following variable changes: 
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Then equations (3) and (6) become respectively: 
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3. TRANSFORMATION INTO THE HAMILTONIAN SYSTEM ON THE BASIS OF THE RADIAL 
COORDINATE 
 

In this case, we note ( )•=
ξ∂
∂ , and then we define the dual variables as following:  
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We eliminate from (10) the quantities that do not exist in the above dual variables, namely: 
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By neglecting the terms of higher orders as r→0, we obtain the following dual differential equations: 
Hvv =&    (13) 

with: 
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The resolution of the governing equation (13) with the boundary conditions (7) is easy. We first write the 
solution under separable form: 

)(θ= µξψev     (16) 
where µ is an eigenvalue. ψ(θ) is the corresponding eigenvector. Substituting (16) into (13) gives: 

( ) 0IH =θµ− )(ψ    (17) 
From (14), we remark that the solution of v1 is independent of v2. So we can first solve the eigenvalue 
problem (17) for v1. We can easily find the eigenvalues ,...2/3 ,1 ,2/1 ,0 ±=µ . In crack problems, only 
eigenvectors of v1 for positive eigenvalues exist. The singular fields for v1 can therefore easily be obtained, 
namely: 
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where K1 and K2 are stress intensity factors, )1(12 ν+= EhD . From dimension analysis, we know that the 
eigenvalues for v2 may be negative, and the most negative eigenvalue is µ=−1/2. Since the eigenvector of v1 
for µ=−1/2 is nil, from (14), we have: 

2222 vHv =&    (19) 
The solution of (19) with the boundary solution (7) is: 
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(18) and (20) are just the solution found out by Hartranft and Sih (1968) by using an integral transform 
technique. Here we find it with rather a simple approach. 



 
4. TRANSFORMATION INTO THE HAMILTONIAN SYSTEM ON THE BASIS OF THE 
ANGULAR COORDINATE, MULTI-MATERIAL PROBLEMS 
 
If we define the dual variables as follows: 
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and we note ( )•=
θ∂
∂ . We eliminate from (10) quantities that don’t exist in the dual variables defined above, 
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We obtain another dual differential equations: 
Hvv =&     (23) 

with 
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The solution of (23) gives the same results as those found in the precedent section.  
The main advantage of this approach is its high capacity to deal with the multi-material problems. Imagine a 
crack or a notch formed by n homogenous plates, all interfaces between two of these plates intercept at the 
crack tip. The boundary conditions at the crack lip are therefore:  
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and the continuity conditions across the interfaces are: 

)()( )1()(
i

i
i

i θ=θ=θ=θ +vv     (27) 
where the superscript (i) indicates the quantities in the zone occupied by the plate i. It is seen that the variable 
vector v is continuous across all the interfaces. This makes the solution of the multi-material problems much 
easier. In each zone, we can establish the governing differential equation (23), namely: 
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We look for only the eigenvalues leading to singular stress filed near the crack tip. According to the analysis 
made in the precedent section, the vectors v1 corresponding to negative eigenvectors are nil, while a singular 
vector v2 requires negative eigenvalues. Therefore, we can divide (28) into two distinguish equations: 
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We can resolve (29) by writing v1 and v2 under separable form: 
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Substituting (30) into (29) gives: 
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The solution of (31) is immediately written as follows: 
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According to the continuity conditions (27), we obtain the relationship between the ψ’s at the two crack lips: 
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where G1 is a 4×4 matrix and G2 is a 2×2 matrix. According to the boundary conditions (26), we have finally 
the following conditions allowing calculation of the eigenvalues: 
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Once the eigenvalues obtained, the corresponding eigenvectors can immediately be computed from (33). 
 
5. ORTHOTROPIC PLATES 
 
Anisotropy is a very important quality in composite plates. Now let us consider an orthotropic plate that is 
habitually used in engineering applications. If the mid-plane is perpendicular to the orthotropic axis, one can 
write the relationship between the stress and strain components in the cylindrical coordinate system: 
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The components of the stiffness matrix may be function of θ. From (37), one can easily find:  
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By choosing the following dual variable vectors: 
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and by neglecting the high order quantities as r →0, we can find the following dual differential equations: 
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with ( )•=
θ∂
∂  and 
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Here again, we establish the standard form of the governing equation (40) in the Hamiltonian system. We 
can then perform the separation of the variables and solve the corresponding eigenvalue problem as 
described in the precedent section. As for the isotropic materials, cracks or notches formed by several 
anisotrapic plates can also be dealt with in a very similar manner.  
 
6. CONCLUSIONS 
 
In this paper, we have developed a new approach to deal with asymptotic fields near a crack tip in thin plates 
subjected to bending forces. Ressner hypothesis are used in this theory. By establishing dual differential 
equations in the frame of the Hamiltonian system, a large range of problems in this topic, some of them are 
often difficult to treat with the traditional techniques, can be solved in rather a simple way.  
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