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ABSTRACT 
 
Volume energy density factor is derived to evaluate the crack growth behavior under the electric 
field/shear stress boundary conditions for the PZT-4 and PZT-5H piezoelectric ceramics. Positive electric 
field is found to enhance anti-plane shear crack growth while negative electric field tends to retard crack 
growth. This result is similar to that obtained for in-plane crack extension. Crack growth solutions for 
electric displacement/shear strain boundary conditions, however, suggest that positive electric 
displacement would retard anti-plane shear crack growth while the opposite would occur for negative 
electric displacement. It is anticipated the same conclusion would hold for in-plane crack extension, a 
result that deserves future investigation. 
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1. INTRODUCTION 
 
Anti-plane shear crack models have been used primarily as a guide for analyzing in-plane crack problems 
because they are simple to solve and behave similar to plane crack extension. Cracking of piezoelectric 
materials such as barium titanate and lead zirconate titanate ceramics has added complexities because of 
the electro-mechanical coupling effects. They possess the special features that when deform an electric 
field is produced and when subjected to an electric field deformation is pronounced. Such properties are 
induced through a process referred to as poling such that the materials become transversely anisotropic. In 
this spirit, the anti-plane shear crack model will be adopted in this work to better understand the in-plane 
crack growth enhancement and retardation behavior. 
 
One of the unexplained cracking phenomena in piezoelectric ceramics is concerned with the situation that 
a crack tends to extend longer when the electric field is directed in the pole direction. If the electric field 
opposes the pole direction, the crack extends shorter. Past attempts [1-4] have provided many reasons 
why the theoretical and experimental results did not agree but failed to emphasize why they should. Only 
recently, the volume energy density criterion [5,6] gave results that are physically sound and did not 
contradict with observed data. The energy release rate remain unchanged if the electric field direction is 

  



reversed with reference to that of the pole. 
The vulnerable situation for a piezoceramic with a pre-existing crack under anti-plane is for the crack 
edge to be parallel with the axis of longitudinal shear and transverse anisotropic which coincides with the 
poling direction. In contrast to in-plane extension the applied electric field would be normal (anti-plane 
shear) to the pole direction rather than being parallel to each other (in-plane extension). Hence, positive 
and negative electric field should be referred to the coordinate axes rather than the poling direction. The 
difference between a positively and negatively applied electric field in anti-plane shear is to reverse the 
direction of poling. What is physically meaningful is to identify the combination of boundary conditions, 
applied field direction and material symmetry that would enhance or retard crack growth. Moreover, 
inappropriate use of fracture criterion could lead to results that would violate the first principle. The 
energy release rate criterion shows that a positive crack driving force could become negative by 
increasing the absolute value of the applied electric field [7,8]. 
 
 
2. ANTI-PLANE SHEAR CRACK 
 
Consider the anti-plane shear of a line crack of length 2a in a transversely isotropic piezoelastic material. 
Referring to Fig. 1(a), the crack lies in the xy-plane while the poling direction coincides with the z-axis. 
At infinity, either the pair (τ∞; E∞) or (γ∞; D∞) are specified. The uniform shear stress and strain are τ∞ and 
γ∞, respectively whereas E∞ and D∞ are the uniform electric field and displacement, respectively.  

 

 τ∞ or γ∞  τ∞ or γ∞

 E∞ or D∞  E∞ or D∞

 
 

Fig. 1 Schematics of anti-plane shear crack and near tip element 
 
2.1 Basic equations 
Under anti-plane shear, there prevails only two pairs of stress and strain (σzx; γzx) and (σzy; γzy) which are 
functions of x and y. The in-plane electric and displacement field possess the components (Ex; Ey) (Dx; 
Dy), respectively. In the absence of body forces and charges, the equations of equilibrium are given by 
 

0
yx
zxzx =

∂
σ∂

+
∂
σ∂

,    0
y

D
x

D yx =
∂

∂
+

∂
∂

.                      (1) 

 

  



On the crack surface, the tractions Tz and/or surface charges q can be specified: 
 

yyxxyyxxxyz nDnDq,nnT +=−σ+σ=                  (2) 
 
where nx and ny are components of the unit normal vector. The constitutive relations take the forms 

x15zx44zx Eec −γ=σ ,   y15zy44zy Eec −γ=σ                 (3) 
and  

x11xz15x EeD ∈+γ= ,   y15yz15y EeD ∈+γ= .                (4) 
 
only three material constants need to be specified; they are c44 (elastic), e15 (piezoelectric) and ∈11 
(dielectric), 
 
2.2 Conditions far away and on crack 
Referring to Fig. 1(a), a uniform shear stress field τ∞ or strain field γ∞ together with uniform electric field 
E∞ or electric displacement D∞ can be specified, i.e.,  
   

∞τ=σzy   or   ∞γ=γ zy   for ,                (5) ∞→+ 22 yx
and 

∞= EE y   or   ∞= DDy   for .                (6) ∞→+ 22 yx
 

Note that poling is in the positive z-direction. 
 
The conditions on the crack surfaces are to be free of surface tractions and surface charges. They are 
written as 
 

0zy =σ ,  0Dy =   for 0y;ax =< .                     (7) 
 

The solution for this problem is well known [7,8]. The r and θ functions for those quantities referred to 
the x- and y- direction can be written as 
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Refer to Fig. 1(b) for the polar coordinates measured from the crack tip. The r/1  singularity is the 
same as that found for the corresponding anti-plane shear crack in elasticity. 
 
 
3. Volume energy density function and factor 
 
The volume energy density in an element ahead of the crack, Fig. 1(b), can be computed from 
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Eq. (8) indicate that the singular term would dominate as r→ 0, the crack tip. It follows that dW/dV in eq. 
(9) would depend on 1/r and can be expressed as 
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where r is the distance from the crack tip such that r ≥ ro. The core region with radius ro is excluded from 
the analysis. 
 
For the loading in Fig. 1(a), the crack would extend along the x-axis θ = 0 where dW/dV reaches a critical 

  



value (dW/dV)c that is characteristic of the PZT material. In view of eqs. (8), all quantities referred to the 
x-direction would vanish and those referred to the y-direction for θ= 0 can be expressed as 
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which can be substituted into eqs. (9). Comparing the result with eq. (10) gives the energy density factor 
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For an element situated at r = ro and θ = 0, the condition of (dW/dV)c is equivalent to S =Sc. The intensity 
factors in eqs. (12) stand for 
 

a)GeFc(K j15j44III π−=τ ,    aFjIII π=γK  
(13) 

a)GFe(K j11j15D π∈+= ,    aGK jE π=  
 
where j = I and II correspond to the two different types of boundary conditions (τ∞; E∞) and (γ∞; D∞) to be 
considered. They shall be referred to as Case I and II. 
 
Case I specifies τ∞ and E∞. The contractions F1 and G1 in eqs. (13) given by [7]: 
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Putting eqs. (14) into (13) and normalizing eq. (12) with respect to , it can be shown that )c4/(a 44
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where p = E∞/τ∞  is a load factor. 
    
Case II specifies γ∞ and D∞. The quantities Fj and Gj in eqs. (13) for j = II are known from [7]. They can 
be put into eq. (12) to render 
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where q = D∞/γ∞  is a load factor. 
    
Eqs. (14) and (15) show that the volume energy density factor S could increase or decrease with reference 
to the ratios of the electric field to shear stress or electric displacement to shear strain depending on the 
properties of piezoelectric materials. 
 
 
4. Crack growth criterion 
 
The form of eq. (10) has been used as a criterion [9,10] for crack initiation and growth. A crack is 
assumed to grow in segments of r1, r2, …, rj, …, rc after dW/dV in an element at r = ro shown in Fig. 1(b) 
has reached (dW/dV)c , i.e., 
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The first increment r1 is measured from the core region ro. Hence, the half crack length would increase 
from a to a+ ro+ r1. Each subsequent step can be treated in the same way. 
4.1 Effect of electric field and displacement reversal 
The effect of electric field and displacement will be examined. Now, let the superscripts +, 0, - be 
attached to those quantities that refer, respectively, to E∞ or D∞ that are positive, zero, and negative. 
Positive E∞ or D∞ corresponds to the positive direction of the coordinate axis. The corresponding crack 
growth segments are , and while the volume energy density factors are S , and  
where j = 1, 2, etc. It follows from eq. (17) that for the jth segment of crack growth yield the expression. 
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Once the energy density factors are known, the crack growth segments can be computed for different 
boundary conditions to examine how the direction of applied electric field displacement would affect 
crack growth. Numerical results will be made available for the PZT-4 and PZT-5H piezoelectric materials. 
Their elastic, piezoelectric and dielectric constants can be found in Table 1. 
 
 

TABLE 1 
 Elastic piezoelectric and dielectric constants 

 
Material constants  

    Material 
c44 ×10 (N/m10 2) e15 (C/m2) ∈11×10 (C/Vm) 10−

    PZT-4 2.56 13.44 60 

    PZT-5H 3.53 17.00 151 

  
4.2 Case I: Positive and negative electric field 
Note from eq. (15) that a change in the sign of p, i.e., positive and negative E∞ would affect the value of 
the energy density factor S. Using the case of E∞= 0 or  as reference, the ratio 

/  and S /S  can be calculated. This also gives / r  and r /  because they are directly 
proportional, eq. (18). The numerical results are summarized in Table 2 for different values of p = E
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Plotted in Fig. 2 are the numerical values in Table 2. Both curves go through the coordinate p = 0 and 

/ r =1. The crack growth segment is greater than r  for positive E∞ and smaller than r  for 
negative E

o
1

∞. This indicates that +E∞ and -E∞ would enhance and retard crack growth. Such a trend 
continues to prevail for the subsequent crack growth segments because of the relation [11] 

 
 

TABLE 2 
. Normalized first crack growth segments  for Case I (τo

11 r/r± ∞; E∞) 
 

E∞/τ∞×10  (Vm/N) 3− 
Material -15 -10 -5 0 5 10 15 

PZT-4 0.672 0.765 0.874 1 1.143 1.302 1.478 

PZT-5H 0.675 0.742 0.851 1 1.191 1.422 1.695 
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The results / r >1 for +E+
1r

o
1 ∞ and / r <1 for -E−

1r
o
1 ∞ is similar to those found for in-plane crack extension 

[6]. A sign change in E∞ alters the ways with which the electrical and mechanical properties of the 
material would interact with external disturbance. This causes the crack to grow longer for +E∞  and 
shorter for -E∞.  
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Figure 2: Normalized crack growth segment as a function of electric field to shear stress ratio 

 
4.3 Case II: positive and negative electric displacement  
When strain γ∞ and electric displacement D∞ are specified on the remote portion of the boundary, Fig. 
1(a), the coupling of the electrical and mechanical properties would react differently when the direction of 
the electric displacement D∞ is changed. This can be exhibited by solving for S in eq. (16) for the PZT-4 
and PZT-5H materials. Following the exact procedure as discussed earlier for Case I and eq. (15), the 
numerical values of /  are first obtained. Application of eq. (18) gives / r  from which eq. (19) 

gives the other growth steps /  for j = 2, 3, etc. The results for the first step are outlined in Table3. 

±
1S o

1S ±
1r

o
1

±
jr

o
jr

 
 

TABLE 3 
Normalized first crack growth segments  for Case II (γo

11 r/r± ∞; D∞) 
 
D∞/γ∞ (C/m2) Material 

-15 -10 -5 0 5 10 15 

PZT-4 2.880 2.103 1.477 1 0.673 0.459 0.467 

PZT-5H 1.894 1.535 1.237 1 0.824 0.708 0.653 
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Figure 3: Normalized crack growth segment as a function of electric displacement to shear strain ratio 

 
In contrast to Case I for specifying (τ∞, E∞), the crack growth behavior for Case II where (γ∞, D∞) are 
prescribed reacts in an opposite manner. Negative D∞ decreases crack growth while positive D∞ decreases 
crack growth. Such a trend is displayed in Fig. 3. The curves also intersect at q = 0 and 

. However, their slopes are negative instead of being positive as those in Fig. 2. For 
Case I. These results are new and are expected to prevail for in-plane a crack extension as well. 
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5. CONCLUSIONS 
 
Further application of the volume energy density criterion show the enhancement/retardation behavior of 
crack growth in anti-plane shear is the same as that for in-plane crack extension [5,6]. However, when the 
stress/electric field boundary conditions are replaced, a reversal of the enhancement/retardation behavior 
is predicted. Using D∞= 0 as the base, crack growth would be increased for negative D∞ and decreased for 
positive  D∞. These effects are just the opposite to those for prescribing E∞ and τ∞. 
 
Experimental verifications of the above findings for anti-plane shear crack growth are impractical because 
it is next to impossible for producing a pure longitudinal shear mode. Some degree of opening mode 
would always be present ahead of a tunnel crack especially for the ceramic-like materials that are hard 
and brittle. The aim of this work is to provide the motivation for solving the electric displacement/strain 
boundary-value problem for in-plane crack extension. Displacement boundary condition experiments 
could be designed and performed to show that positive D∞ would retard crack growth whereas negative 
D∞ would enhance crack growth. This is contrary to the observations made in [1,2] for crack growth 
under the electric field/stress boundary conditions. 
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