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ABSTRACT 
  
Recent results of analytical investigation of multilayered spaced and non-spaced shields using simplified 
models describing impactor-shield interaction are discussed. For targets consisting of plates manufactured 
from ductile materials the influence of the order of the plates and air gaps on ballistic limit velocity is 
investigated, and some problems of optimal arrangement of the plates in a layered shield are solved. Design 
of two-component ceramic-faced lightweight armors against ballistic impact is investigated, and 
approximate analytical formulas are derived for areal density and thicknesses of the plates in the optimal 
armor as functions of parameters determining the properties of the materials of the armor components, cross-
section and mass of an impactor, and of the expected impact velocity. 
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INTRODUCTION 
 
Sub-ordnance penetration and perforation of multilayered plates has been a subject of intensive research 
during recent years since non-monolithic configurations are considered feasible for the designing shields or 
elements of the shields. Simplified analytical models were derived and used for the analysis and 
optimization of the shields consisting of the layers manufactured from different materials, e.g., ductile multi-
layered shields [1, 2-12], aluminum/Lexan combinations [11], ceramic-faced armors [12-17]. Qualitative 
laws that are obtained from approximate models can be very useful for further theoretical and experimental 
investigations. In order to obtain such laws the most appropriate are those models that allow to derive 
formulas determining the dependence of the ballistic limit velocity (hereafter BLV) on various factors 
affecting perforation, e.g., a shape of the impactor, simultaneous interaction between the impactor and 
different layers of the shield during motion of the impactor in a multilayered armor, properties of the 
materials of the layers, etc. In this respect localized-interaction models [18-19], cavity expansion 
approximations [20-21], Florence’s model [13] appear to be very useful.  
     In this paper we discuss some our results on the multi-layered shields, and additional information can be 
found in Ben-Dor et al. [2-10, 12]. All the results for non-ceramic armor described here were derived 
rigorously using the adopted models for impactor-shield interaction. The obtained results (if not indicated 
differently) correspond to conical impactors with arbitrary shape of the cross-section. The determined 
ballistic properties of the shields are valid for any impactor in the considered class. Although validation of 



the obtained results using the available experimental data in the literature is encouraging, specially designed 
experiments are required in order to determine the range of the validity of the obtained results. 
 
BALLISTIC PROPETIES OF MULTILAYERED SHIELDS DETERMONED WITH THE AID OF 
THE LOCALIZED INTERACTION MODELS 
 
Impactor-shield localized interaction model 
Consider a high speed normal penetration of a 3-D rigid sharp impactor into an armor with a finite thickness 
and assume that the localized interaction model is valid, i.e., the impactor-armor interaction at a given 
location at the surface of the impactor which is in a contact with the armor can be described by the following 
equation:  
 

                                        
d
� 
F = ρΩ u( )v2 + σ[ ]� n 0dS,    u = −

� 
v 0 ⋅
� 
n 0                                                    (1) 

 
where   d

�
F  is the force acting at the surface element dS of the impactor along the inner normal unit vector 

  
� 
n 0  at a given location at the surface of the impactor,   

� 
v 0  is the unit local velocity vector, Ω  is function 

determining the particular model for the impactor-shield interaction. Equation (1) with constant parameters 
 comprises the most widely used phenomenological models for homogenous targets (see, e.g., [18,19]). 

Usually parameters ρ  are density and distortion pressure of the armor, respectively, and Ω
ρ,σ

,σ u( ) = u2 .  We 
consider the armor consisting of  N  plates, the material of i -th plate is characterized by values ρi,σi . Often 
these parameters appear in our results as a combination χi = σi ρi . Thus the parameters ρ,σ  in eqn (1) 
depend on the distance of the surface element from the front plane of the target. We assume that the adjacent 
plates are in contact and do not interact. If  the “plate” with the number i  is an air gap then ρi = σi = 0.   �
 The total force  F  is determined by integrating the local force given by eqn (1) over the impactor-armor 
contact surface that depends on the position of the impactor inside the shield. This allows us to write 
equation of motion of the impactor in the normal direction and to determine the BLV that is defined as the 
initial velocity of the impactor required for its nose to emerge from the target with a zero velocity. 
Corresponding cumbersome expressions we do not write here (see, e.g., [2,8]). 
 
Optimum multilayered shield. Plates with the same density and given thicknesses  
For the shield consisting of several plates with the same density but having different values of distortion 
pressure perforated, generally, by a non-conical impactor the following properties are valid. If two adjacent 
plates in a multilayered armor are such that the value of the distortion pressure for the first plate is larger 
than that for the second plate, the BLV of the armor can be increased by interchanging these plates. The 
maximum BLV of the armor is achieved when the plates are arranged in the order of increasing values of the 
distortion pressure of the material of the plates; the minimum BLV is achieved when the plates are arranged 
in the armor in an inverse order.  
 
Optimum two-layered shield. Plates of different densities and with given thicknesses  
The maximum BLV for two-layered armor is attained when the plates are arranged according to the increase 
of the magnitude of the parameter  χ = σ ρ .  
 
Optimum multilayered shield. Plates manufactured from one of the two possible materials  
Ballistic properties of multilayered shields are studied when the shield consists of the adjacent plates made 
from one of two possible materials and the total thickness of the plates manufactured from every material is 
fixed. The following ballistic properties of the shield are proved. The displacement of any plate inside the 
target in direction of penetration  yields monotone change of the BLV of the shield and the criterion of 
increasing or decreasing of the BLV depends of the properties of the materials of the plates, namely, 
relocation of a plate with a larger (smaller) value of the parameter χ  yields an increase (decrease) of the 
BLV. The maximum BLV is obtained for the two-layered shield without alternating the plates manufactured 
from different materials; the front plate in the optimum shield must be the plate manufactured from the 
material with the smaller value of the parameter χ .  
 



Optimum multilayered shield with a given areal density and thickness. Plates manufactured from 
different materials  
The problem is formulated as follows. There are several materials with different properties which can be 
used for manufacturing the plates in a mshield. The areal density of the shield (its mass per surface unit) and 
its thickness are given. The goal is to determine the structure of the shield (the order and the thicknesses of 
the plates from different materials) that provides the maximum BLV of the shield. It is proved that the shield 
with maximum BLV must consist of one or several adjacent plates (these cases are equivalent is point of 
view of the model) manufactured from the material with the maximum χ . The shield with minimum BLV 
consist of one or several adjacent plates manufactured from the material with the minimum χ . The values of 
BLV of different shields with given areal density and thickness are between these limiting values. 
 
Optimum multilayered shield with large air gaps  
It is assumed that the impactor perforates the plates in a multi-layered  shield sequentially, i.e., it does not 
interact with two or several plates simultaneously. One would expect that this assumption is approximately 
valid if the length of the impactor is much less than the thickness of every plate. In the framework of the 
adopted penetration model this assumption corresponds to the spaced armor when the widths of the air gaps 
are greater than the length of the impactor. The set of plates is given. We proved that the maximum BLV is 
attained when the plates are arranged in the order of increasing values of χ . 
 
Influence of air gap on the ballistic resistance of the two-layered shield  
The following property is proved. If χ1 > χ2 χ1 < χ2( )

1 =

 then the BLV decreases (increases) with increasing 
the air gap thickness from zero to the length of the impactor (BLV becomes constant with the further 
increase of the air gap thickness). If χ χ2, i. e., the properties of the material of both plates are the same, 
the ballistic limit velocity does not depend on the thickness of the air gap. Numerical calculations performed 
for armors consisting of plates manufactured from different materials show that the developed model 
predicts a very negligible effect of an air gap upon the ballistic resistance. 
 
Influence of the order of the plates on the ballistic resistance of a  two-layered spaced shield  
The maximum BLV of the armor with a fixed width of an air gap is attained when the plates are arranged in 
the order of the increasing values of parameter χ . 
 
Influence of air gap on a ballistic resistance of a multilayered shield consisting of the plates are 
manufactured from the same material.  
The BLV of the spaced shield is determined by the total thickness of the plates, i.e., it  is independent of the 
air gap sizes between the layers, of the sequence of the plates in the shield and of the distribution of the total 
thickness among the plates. Monolithic and spaced shields are equivalent in the framework of the considered 
model. 
 
Optimal shapes of 3D impactors. 
We studied optimization of 3D impactors with a given longitudinal contour, length and volume. We 
determined the existence of the "universal" optimal impactor among the 3D conical and non conical slender 
impactors penetrating normally into non-homogeneous (layered) semi-infinite shield or into a shield with a 
finite thickness. The impactor having the minimum drag moving inside a homogeneous medium with a 
constant velocity penetrates to the maximum depth into a semi-infinite shield and has the maximum BLV 
when it penetrates into a shield with a finite thickness, regardless of the distribution of the properties of the 
material in the shield along the penetration path. Using the analogy with the hypersonic flow over the flying 
projectiles (Ω =  in eqn (1)) it is predicted that the optimal impactors have a star-shaped cross-section. u2

 
 
INFLUENCE OF AIR GAPS ON THE BALLISTIC PROPERTIES OF MULTILAYERED SHIELDS 
DETERMINED USING CAVITY EXPANSION MODEL  

 
Cylindrical cavity expansion model (CCEM) 
The model is based on the assumptions that the impactor (a body of revolution) moving in a shield causes 
hole expansion in every plane which is normal to the direction of its motion when it reaches this plane and 



these layers do not interact. Expression for hole expansion vs. the time ( t = 0 is the beginning of the hole 
expansion)  at every plane reads (for details see, e.g., [20-21]): 
 

                                                    p = α Ý R 2 +βRÝ Ý R + γ                                                                  (2) 
 
where R  is radius of the hole,  is a pressure applied in the normal direction at the part of the impactor’s 
surface, coefficients α

p
, β, γ  depend on the properties of the material of the corresponding plate in the 

multilayered shield. Taking into account kinematic relation between the location of the impactor in the 
shield, its shape and the radius of the hole at every plane, the equation of motion of the impactor allows us to 
determine the BLV. Corresponding formulas can be found in [4]. It is important to emphasize that, even for 
conical impactor, in eqn (2) Ý Ý ≠ 0R  and cavity expansion model does not reduce to the localized interaction 
model. Such special models for homogeneous metal shields can be found, e.g., in [21]. Thus, BLV depends, 
generally, of the parameters αi , ,βi γ i  where the subscript i  denotes the number of the plate in the shield.     
 
Optimum multilayered shield consists of given plates. Large air gaps.  
The following properties are proved. If two adjacent plates in a shield with large air gaps are such that the 
value of the parameter χ ˜ = γ α  for the first plate is larger than that for the second plate, the BLV of the 
shield can be increased by interchanging these plates. The maximum (minimum) BLV of the shield is 
attained when the plates are arranged in the order of increasing (decreasing) values of the parameter ˜ χ . The 
values β  do not effect the optimal order of the plates. i
 
Comparison of ballistic properties of monolithic and spaced shields  
The simplified models that we use imply that monolithic target and the target consisting of several adjacent 
plates are equivalent if the total thickness of the plates and their material are the same. However, in contrast 
to localized interaction model,  CCEM predicts the difference in BLV for monolithic and spaced shields. It 
was shown analytically (for large air gaps) that the BLV of a spaced shield is larger than that of a monolithic 
shield, and the BLV of the shield increases with the increase of the number of the plates with the same 
thickness while the total thickness of the plates is kept constant. Numerical simulation using the model [21] 
showed that the influence of air gaps on BLV of the shield is weak for slender conical impactors and can be 
more pronounced with the increase of the apex half angle of its nose and the density of the material of the 
shield. 
 
OPTIMUM TWO COMPONENT CERAMIC ARMOR 
 
Model description 
Consider a normal impact by a rigid projectile on a two-layer composite armor consisting of a ceramic front 
plate and a ductile back plate. We employ the  following model v∗

2 = αε2σ2h2z Az + m( )/ 0.91m2( ) where 
 is the BLV, v∗ m  is a projectile's mass, R  is a projectile's radius, h  are the plate's thicknesses, 1, h2 σ  is the 

ultimate tensile strength, ε  is the breaking strain, ρ  is density, A = ρ1h1 + ρ2h2  is the areal density, 
; subscripts 1 and 2 refer to a ceramic plate and a back plate, respectively. For  z = π R + 2h1( 2) α =1 this 

model was suggested by Florence [13] and re-worked by Hetherington [14]. We generalized slightly this 
model introducing a coefficient α  which can be determined using the available experimental data in order to 
increase the accuracy of the predictions.     
     The objective of our study is to find the thicknesses of the plates h  which provide the minimum areal 
density of the armor for a given BLV v .   

1, h2
∗

Optimum two component armor 
We found that using the dimensionless variables 
 

h i =
hi
R

, ρ i =
πR3ρi

m
, i = 1,2, w = v∗

0.91ρ2
αε2σ2

, A =
πR2A

m
 

 



the problem is reduced to finding a positive h 1 that provides the minimum A = A h 1,ρ 1,w ( ). The 
dimensionless areal density A  is a function of one variable h 1 and depends on only two parameters, ρ 1 and 
w . Therefore, although the exact analytical solution of the problem does not exist, the latter property allows 
us to find the simple approximations for characteristics of optimum shield in a general case, namely, for 
arbitrary combination of materials of the plates. Such approximations  (with the average accuracy of 3% in 
the range 0.04 ≤ ρ 1 ≤ 0.1,1 ≤ w ≤10 ) for the thickness of the ceramic plate and the areal density of the 
optimum armor are given by the the following expressions: 
 

h 1
opt =

0.04 +1.12ρ 1( )w 1.895

ρ 1 ρ 1 +1.29w 1.47 + 0.1( ), A opt = 0.04 + 1.12ρ 1( )w 0.425 

 
The optimal thickness of metallic plate is h 2

opt = A opt − ρ 1h 1
opt( ) ρ 2 . 
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