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ABSTRACT 
 
A constitutive model for a joint element is developed based on a generalisation of the Cohesive Crack 
Model. The model uses a constitutive law based on dual external (tractions and crack opening vector), 
and internal variables, the latter of damage nature, responsible for the evolution of the softening cohesive. 
A potential energy of unilateral type couples the crack opening vector with the damage variables, whose 
evolution is ruled by two yielding modes, one accounting for the slippage of the fibres, the other for the 
deterioration of the material due to crack opening. 
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1. MOTIVATIONS, BACKGROUND AND OBJECTIVES OF THE MODEL PROPOSED 
 
The occurrence of fractures causes two main phenomena that affects the mechanical modelisation: first, 
energy is dissipated in a domain of measure zero, since its physical dimension is smaller than the 
dimension of the structure (actually, its dimension is fractal); secondly, the displacement field ceases to 
be continuous, and finite jumps appear, so that the usual compatibility equations lose their validity, that is 
the vectorial space of the displacements changes from H1 to BV. From a physical point of view, these 
phenomena give rise to an unstable behaviour at the material and structural level. 
 

The numerical counterpart is that a simulation of the process with a continuum model suffers of 
numerical problems of mesh dependency, so that either a non-local media has to be used, or some form of 
enhancement of the displacement field has to be introduced. Enhanced elements, with embedded 
discontinuities, like the X-FEM recently developed by Belitschko are a promising example of the latter 
approach. An alternate methodology consists in introducing discontinuous interfaces in some predefined 
locations in the continuum. In the interface model the width of the process zone is assumed to reduce to 
zero, but the amount of dissipation is controlled, allowing a numerical treatment of the material 
instability. Tractions are directly related to the displacements jumps, so that there is no need to introduce 
generalised derivatives. 
 

The latter approach is followed in this paper. Specifically, attention is focused on the constitutive 
behaviour of the interface model, disregarding the problem of refining the discretisation for better 
localising the fracture surfaces. Main objective of the paper is to modify an interface model previously 
proposed in the literature by Carol [1,2], that accounts for mode I and mode II fracture, based on the 



definition of an intrinsic curve for the interface in the traction space, so that a plastic-like behaviour is 
assumed for the dual relative displacements. Cohesive forces are supposed to act after crack opening, and 
softening is introduced assuming a phenomenologically defined degradation of some material parameters. 
The model, thus, appears as a (non associated) elastic-plastic-softening model. Elasticity is introduced for 
numerical purposes. Still retaining the idea of an intrinsic curve and of its degradation as consequence of 
fracture evolution, the model proposed differs substantially from the original one in several aspects that 
will be now briefly introduced 
 

1. The cohesive traction-displacement laws, as well as the softening behaviour of the interface, are 
defined on the basis of thermodynamic potentials, so that they can be easily implemented in a 
variational framework for numerical analysis.  

2. The softening law is introduced through the dependency of the limit surface on a damage parameter, 
dual to the internal variable that rules the reversible loading-unloading. In this way the limit condition 
of the interface (yield surface) is defined in the extended space of the tractions and of the conjugated 
forces. The development follow closely a recently proposed model of continuum damage [3]. 

3. The first consequence of points 1,2 is that it is possible to obtain crack opening and reclosing, without 
permanent residual relative displacements, as in standard damage models. Furthermore, the 
thermodynamic framework allows to easily account for additional effects, like fibre bridging. It is 
sufficient to add an additional term in the internal energy, and additional dissipation mechanisms, that 
account for fibre slippage or yielding, in the dissipation potential.  

 
 
2. PRESENTATION OF THE INTERFACE MODEL 
 
The interface model is local, and is ruled by the following fields of dual variables:  
 

( ) Uww tn ∈= ,w  Relative displacements ( ) ', U∈τσ=t  Cohesive forces 

ℜ∈ω  Internal damage variable ℜ∈ζ  Conjugated damage energy 
I∈α  Hardening internal variable 'I∈χ  Conjugated force 

 ( ) ( ) ( ) pepppeee hhh +=αω+αω=αω= ,,,,,, www  (1) 
 

The indices n,t refer to normal and tangential components respectively. In the remaining of the paper only 
the 2-dimensional case will be addressed. It is underlined that a scalar damage mechanism is assumed, 
while the hardening variables can be in general vectors, so to account for anisotropic friction mechanisms. 
However, in this paper, they will not be explicitly considered. Following the Standard Generalised 
Material Model, the kinematic variables are partitioned in a reversible and an irreversible component, 
identified in (1) by the indices e,p, as done in [3] (the additive decomposition implies linear kinematic). 
The model is characterised by the functional of the internal energy u, that rules the reversible behaviour, 
and of the dissipation d, that accounts for irreversible phenomena. Denoting by (.)c the conjugated 
potential, the constitutive equations are then obtained as 
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The last of (2) are the flow rules for the irreversible kinematic variables.  
 
2.1 The internal energy of the interface 
 
The following form is assumed  
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In (3) Km denotes the stiffness of the concrete matrix, while Kf is the stiffness of the fibre phase, assumed 
to act only in the normal direction. The damage mechanism is assigned only to the concrete matrix, but a 
further degradation, with the same or with another internal variable, can be introduced in the same way 
for the fibre properties. Introducing the set { }0≥= nnn wwW , the presence of the indicator function of Wn 

ensures the no compenetration condition. The set { }1−≥ωω=Ω ee  has been introduced in order to 

preserve the positivity of the damaged stiffness, so that the damage variable range from 0 to –1, as usually 
assumed. However, for the model (3) this term is not strictly necessary, since � tends to –1 asymptotically, 
as will be shown later. Note finally that normal and tangential reactions are uncoupled.  
The potential used, while preserves the unilateral character of the interface, does not fulfil the condition 
that no relative displacement develops until fracture occurs. Although the introduction of a fictitious 
elastic stiffness is usual in interface models [1], in the author’s opinion it introduces serious drawbacks, 
that, however, will not be commented in this paper. 
 
2.2 The dissipation potential 
 

Following the developments in [3,4], in the time independent case considered in this model, the 
dissipation functional turns out to be conjugated to the complementary dissipation functional (plastic 
potential), that is given by the indicator function of the elastic domain S. Multiple dissipation mechanisms 
can then be included considering S as the convex hull of a finite number of domains Si. The elastic 
domain is specified by means of a yield function. For the sake of clearness, the development of the model 
is followed step by step starting from the form assumed by Carol: 

 22
0

2 )()( σµ−−σµ−+τ= ccgC  (4) 

with c, �, �0 material constants. In the plane ��� expression (5) represents an hyperbola having the Coulomb 
bilateral as asymptotes. The intersection of gC with the co-ordinate axes are given by 

)/2(,/2, 0000 σ−µσµ±=τσ−µσ=σ cc . Clearly, any fracture process occurs with irreversible 
displacements. In order to limit the phenomenon of dilatancy, the authors introduce a non-associative 
flow potential that becomes flat for compressive normal tension beyond a certain limit.  

The first improvement consists in introducing the conjugate damage variable � for definitely separating the 
irreversible plastic effects (due either to void development in the concrete or to fibres yielding or 
slipping) from the fracture phenomena which is associated mainly to damage. In the original model the 
parameters c, �0 where affected by the evolution of the fracture process, while � was kept constant. A 
possible straightforward generalisation could then be to assume the yield function 

 ( )fn KKwwccg C +σ=ζ=ζσµ−ζ−−ζ−σµ−ζ−+τ= 000
22
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where the definition of the new damage variable is required for dimensionality reasons (note that � has 
dimensions of a force per unit of length). The choice of (5) is motivated by the assumption that the 
damage affects equally the cohesion and the uniaxial limit stress. Expression (5) represents a lined 
surface, whose intersection with the plane �=0 are the two straight lines  

 00 2)2( σµ−=σµ+ζµ−σ=ζ+σ c  (6) 

No physical damage mechanism is clearly associated t any of them. In an uniaxial process the initiation of 
the fracture can be found using the elastic law (2), as will be described soon. It is found that the limit 
values for the normal traction and the conjugated damage force are 



 0lim0lim )2/1(2)2/1(
σ

++
=ζσ

++

+
=σ

nKK

Kn
nKK

KK

mf

m

mf

mf  (7) 

so that neither �0 has a clear physical meaning, nor the value of the energy per unit area at the initiation of 
the fracture process matches the value that one would expect, i.e. ½ �0 w0. 

A further modification is then proposed, inspirited by the form (6) of the lined surface, that is it is 
proposed that the intersection of the limit surface with the plane �=0 reduce to the two lines 

 µ−ζ+σ=σσ=ζ+σ=ζ−ζ /2;,0 000 ckk  (8) 

where the value �0 is the energy necessary for mode I fracture initiation if in the process only damage 
occurs. The expression for the limit surface takes the form 
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2 )()(22)(2 σ−σµ−ζ−ζµ−−σ−σµ−+τ= ccg  (9) 

The function (9) presents several differences with respect to (5). The intersection with the �- � plane is now a 
parabola, with −∞→σ∞→τ for , as before, but the tangent to the curve tends to 0, so that the problem 
of dilatancy is substantially reduced. The surface (9) is still a lined one, whose intersection with the plane 
�=0 is given by the two straight lines (8), that intersect for the value µ−σ=σ /2 0 c , positive for the 
common values of the material parameters. The activation value of the conjugate damage energy will be 
discussed in the next paragraph in connection with the analysis of an uniaxial process. The surface (9) 
forms in the ��� plane an hyperbola, whose sides are asymptotically tangent to a Coulomb bilateral with 
slope 1/|2�|. Note that, although negative values of the damage conjugate variable are not called out by the 
admissibility condition (9), they are not attainable on the basis of the elastic relations. A sketch of 
criterion (9) and its section with the co-ordinate plane ���� are given in figs. 1,2. The flow rules are given by 

the usual consistency rule, ))((),( sgsgh sp
−∂ℜ∈λ∂λ=& , and they take the forms 
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It is stressed that the derivatives of the dissipation potential are continuous functions. Furthermore the 
permanent normal opening depends only on the difference between the current value of the damage 
energy and its limit value �0. When the latter is attained, the opening displacement becomes fully 
reversible, but damage still increases thanks to the other mechanism (first term in the latter of (10)). 
Additional dissipation mechanisms can be added in order to account for fibre yielding. The simplest 
choice could be mff KKddh /002 =≤σ−ζ+σ= , with �of the limit tensile stress in the fibres. A 
sketch of the resulting domain in the uniaxial case is presented in fig. 3. First the matrix fails, then fibres 
plasticise, until pure separation of the interface is reached.  

 
            Figure 1 : Elastic domain                Figure 2 : section of the elastic domain             Figure 3 : uniaxial domain 
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3. EXEMPLIFICATION : UNIAXIAL RESPONSE TO MODE I FRACTURE 
 
The characteristics of the model are investigated with reference to the special case of pure normal traction 
acting on the interface. Starting from a virgin state (�e=0), the elastic equations (2) furnish 
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Eqn.(12) is the parametric expression of a curve in the ��� plane, that can intersect the limit surface in one of 
the 2 points that satisfy eqns. (8), according to the relative values of the material parameters kσζ ,0 . First 
is considered the case that the parametric curve (12) hits the limit surface on the line �=�0, corresponding to 
a pure damage (reversible) process. Then one has 
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Therefore, in order to obtain the desired value for the fracture activation energy, it must be 

mn 00 2/ σ=ζ , with �0m the limit stress in the matrix. Indeed, substituting, it is found  
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where the stress in the last expression is relevant to the whole composite. Proceeding with the extension, 
the stress progressively decreases on the fracture surfaces, and tends to 0 asymptotically, as can be easily 
proved. This is in contrast with the cohesive model, that is based on the existence of a limit critical value 
of the crack opening. However, the energy for the entire process is finite, and it can be shown that it is 
equal to [4] 
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The previous equation can be used for estimating the value of n. For whatever value of n, the descending 
branch of the �-w curve is always sublinear. 
 

In the case the path (12) intersects first the second line (8) of the boundary, the following is found (note 
that in the case of absence of fibres, the limit stress coincides with the uniaxial limit tension of the matrix, 
and for the initiation energy one finds ( )( )mkmm Kw 0001lim1lim / σ−σσ=ζ=ζ . 
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Loading-unloading uniaxial processes are shown in fig. 4,5, comparing the cases of pure damage 
activation, and of mixed mechanisms. Fig.4 refers to plain concrete and fig.5 to a small addition of fibres. 
Note that no residual displacement is found after unloading in the pure damage mechanism, and the value 
of the damage parameter � tends asymptotically to 1(full damaged state).  

� 



A different case is encountered if the limit surface is hit on the line 0σ=ζ+σ . In this case some 
irreversible displacement is present, as it happens when fibres are present, and yielding occurs. At the 
same time the stiffness decreases, as damage develops. Increasing the relative displacement the stress 
decreases, and the state point moves on the limit curve until it eventually reaches the condition ���0. At this 
stage the fibres start to slip, and no more permanent displacement is added, while damage in the matrix 
increases further. Note, however, that thanks to the hypothesis (2) the rigidity of the fibres remains 
constant, so that a residual plateau is finally reached with a residual stiffness.  

Figure 4 : Uniaxial fracture process for plain concrete   Figure 5 : Uniaxial fracture process for fibre reinforced concrete 
 
4 FINAL COMMENTS 
 
A constitutive model for a joint element has been developed based on a generalisation of the Cohesive 
Crack Model. The element is intended to be used for the microstructural analysis of fibre reinforced high 
strength concrete. The model is thermodynamically based, and differentiate both in the elastic energy and 
in the dissipation the contribution of the matrix and of the reinforcement. The unilaterality of the interface 
is guaranteed in compression, but some elastic opening is still admitted before fracture occurs. The choice 
of the elastic stiffness Kn is based on the energetic equivalence ½ �0/Km = �0 , fracture activation energy. 
The author is conscious of the fact that the parameter is somewhat arbitrary, and that it introduces an 
internal length (the limit elastic opening w0), that could affect the response of the model. A better model, 
where unilaterality is exactly fulfilled, can be implemented using a logarithmic damage law, and will be 
presented in a future paper.  
 

In the paper only the simplest dissipation potential has been presented, but extra terms can be introduced, 
in the form of additional dissipation modes, for accounting explicitly for fibres yielding and other 
dissipative phenomena. However, the calibration of the parameters requires careful comparison with 
experimental data. 
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