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ABSTRACT 

 
Materials fracture often involves various length scales from dislocation evolution at the atomic 

scale level to crack propagation at the continuum levels. In this study, an integrated multi-scale 
model is proposed by concurrent coupling an atomic region, a meso-scale region and traditional 
continuum region.  The meso-scale region is defined as a region with subcracks in comparison 
with a main large crack.  The atomic region is solved by the molecular dynamics method and the 
meso-scale region is a finite element region where potentials in various forms may be introduced as 
fracture criteria. Cohesive-zone model with the cohesive law being the potential was used in the 
meso-scale region.  This model has the advantage to simulate the complete process of a crack 
growth from the micro-, to meso- and then to the continuum regions. Unified description of the 
computation algorithm is presented.  Simulation examples using a model with a primary crack and 
a subcrack located in front of the primary crack in bcc alpha-iron are given. 
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INTRODUCTION 
 

Materials fracture often involves various length scales from dislocation evolution at the atomic 
scale level to crack propagation at the continuum levels. The current capabilities of atomic 
simulations are still restricted to nanoscale length of around 100nm order and are far from meeting 
practical demands of simulating various defects in solids, so a compromise between physical 
precision and computational feasibility is needed.  In the large-scale atomic models, control of 
computation conditions and interpretation of the obtained results are difficult. Models by coupling 
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various length scales and methods provide a means to solve such problems.  Attempt in this 
direction has begun since 1970s.  In the flexible-border or multi-region techniques, a fully atomic 
region is embedded into one or more outer regions and fully coupled atomistic [1] and finite 
element techniques to consider problems with complex nonlinearities were proposed [2-4].  An 
advantage of these models is natural inclusion of atomic potentials as a fracture criterion.  Such 
models successfully explained some brittle microscopic fracture behavior of pure single crystals.  
More recently, the quasicontinuum method with a spatial mesh adaptively refined around highly 
energetic regions appears to be more promising [5].  Multiscale computation has been extended to 
include mean-field quantum mechanics in order to implement semiempirical tight-binding and 
molecular dynamics and finite element methods within one system [6].   

The difficulty inherent in multiscale modeling is the treatment of mesoscale microstructure and 
how it is integrated and connected to micro (or nano)-scale and macro-scale microstructures.  
Computation at the mesoscale level itself involves multiple physical phenomena.  For example, for 
pure materials of single crystals, dislocation nucleation and subsequent interaction and evolution are 
dominant factors, while void or micro-crack formation of various length dimensions and evolution 
are important in more engineering structural materials.  In the case of composites, the interface 
between the reinforcement and matrix represents another microstructure and fracture length scales.  
The fracture behavior of brittle solids often involves the coalescence of many small cracks before 
linking with a main crack [see the review of Ref. (7) and references therein].  This subject has 
been studied extensively within the scope of continuum elasticity [7].  The interaction between 
individual cracks and the effective elastic properties with many cracks is of primary concern. These 
problems have not been treated on the atomic scale.  Viewed from multiscale computation, the 
volume average quantities with regards to the problem having many cracks can be readily taken into 
account in the continuum region within the traditional treatment of coupling atomic and continuum 
models.  This study is concerned with the interaction of individual cracks: a primary large crack 
and a small void-like crack.  The primary crack tip region is deemed atomic, while a meso-scale 
region is introduced to describe the area with the sub-crack and this zone is based on the 
cohesive-zone concept where a fracture criterion is embedded automatically. This model has the 
advantage to consider crack growth interaction at different length scales while still maintaining 
atomic resolution in the most important region. Unified description of the computation algorithm is 
presented and simulation examples using bcc α iron are given.   
 
 
MODEL AND FORMULATION 
  
  Fig.1 shows a central crack model used in the computation; only half of the model is plotted with 
the center of the main crack being a symmetrical axis.  / 2.167a l =  is assumed as an initial 
geometrical condition. The details of the atomic crack tip region embedded within the continuum 
are shown later.  The atomic region notch was created by removing three layers of atoms.  The 
sub-crack region is called a meso-scale region where the cohesive zone theory is applied.  The 
total energy of the system, E , 
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= + ∇ + Φ∫ ∫u u ,                         (1) 

 
where (atom)E  is the total energy of the atomic region, u  the displacement field, Ω  the 
continuum domain, ( )W ∇u  the potential energy of the continuum; ( )δΦ  the cohesive-zone 
potential.  



 The material considered is α iron represented by Johnson’s pair potential [8].  Molecular 
dynamics technique of the velocity Verlet algorithm is used to calculate atom movement with a time 
step of 1fs and the velocity scaling law to control temperature at 300K.  The cohesive surface 
separation model [9] is used in the meso-scale region.  The model relates cohesive tractions T  to 
displacements by =- /∂φ ∂T ∆ , where φ  is the potential and ∆  is the displacement of cohesive 
points.  φ  may be in various forms [9, 10] and a form giving linear cohesive relationship between 
T  and ∆  is introduced here for the brittle materials system, namely, t t tT K= ∆  and n n nT K= ∆ , 
where the subscripts t and n represent quantities at the tangent and normal directions, respectively, 
and nK  and tK  are spring constant-like parameters.  Such cohesive laws are then embedded 
into cohesive finite elements [5].  The cohesive elements are interspersed throughout the material 
of interest; here, the finite element region between the main crack tip and sub-crack tip is such a 
region to see how the main crack and sub-crack interact.  In the atomic region, the crack plane is 
assumed to lie on {100} planes, the cleavage plane of BCC α iron. 
 Additional boundary conditions between the atomic region and meso-scale region are needed, i.e., 
the continuity of force and displacement of the atoms and finite element nodes at the boundary [4].  
The atomic and continuum regions share a common boundary at the neighbor array of atoms and 
finite element nodes.  Based on the virtual work principal, the continuum part in Eq (1) is 
discritized into finite elements.  Quasi-static mode I loading, KΙ , was applied in terms of the 
mode I main crack .  
 
 

Figure 1  Central crack model with one sub-crack located in front of the main crack tip. 
 
 
RESULTS, DISCUSSION AND SUMMARY 
 
 Figure 2 (a)-(d) shows a series of typical snapshots obtained in the simulation. Fig. 2 (a) 
demonstrates that both the atomic region and sub-crack region still undergo elastic deformation at 

an applied loading level of 1/21 53MPamK .=Ι ; it also indicates atom and finite element 
arrangement in these regions.  Figs2. (b)-(d) are the results during subsequent loading for the case 

of K =Ι 2.37, 2.65 and 2.7 1/2MPam , respectively.  In Fig. 2 (b), atom movement to form 
crack-like extension, as indicated at Point A, within the atomic region is observed; the point A is 
slightly away from the initial notch plane.  Meanwhile, the sub-crack also propagates towards the 
atomic region but is then stopped at a distance of about 2 lattice parameters in front of the atomic 
region.  The loading level for this configuration of Fig. 2(b) is smaller than that reported in the 
literature [2].  This is may be due to the blunted initial notch tip, compared to the atomic sharpness 
crack tip in the literature.  In Fig. 2(c), on further loading increase, the sub-crack propagates 
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completely across the continuum region to reach the atomic region and initiates a new crack in the 
atomic region as shown at Point A of Fig. 2(c).  It is this new crack that governs the final failure 
path (Fig.2 (d)).  Note that the system grows into unstable growth with additional small loading 
increment from the state shown in Fig.2(c).  This clearly demonstrates the importance of the initial 
sub-crack.  Further investigation regarding effects of lattice trapping and various parameters 
involved in the model is under way.  In summary, the present study provides an effective method 
for simulating crack growth and crack interaction at different length scales.   
 
 

 
 
          (a) 1/21 53MPamK .=Ι                   (b)   1/22 37MPamK .=Ι  
 
 
 
        
 
 
 
 
 
 
 
 
 
 

(c)  1/22 65MPamK .=Ι                 (d)  1/22 7MPamK .=Ι   
  
 
 Figure 2  Simulation results for 4 loading levels (a) 1/21 53MPamK .=Ι ,(b) 1/22 37MPamK .=Ι  , 

(c) 1/22 65MPamK .=Ι  (d) 1/22 7MPamK .=Ι . Note that the deformation 
magnifications for the atomic region and continuum region are different.                
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