Oral reference : ICF1004250R

AN IMPACT DAMAGE MODEL FOR
CEMENTITIOUS COMPOSITES

Patricia VERLEYSEN' and Joris DEGRIECK?

' Doctor-Assistent, Ghent University, Faculty of Engineering,
Department of Mechanical Construction and Production,
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
? Full Professor, Ghent University, Department of Mechanical Construction and Production.

ABSTRACT

Although in recent years a lot of research has been spent on the dynamic, tensile behaviour of cementitious
composites, such as concrete, less attention has been paid to the modelling of this behaviour. In this
contribution a model, developed within the framework of the continuum damage mechanics, is presented
and the determination of the model parameters is dealt with. One of the essential characteristics of the
approach is that the model distinguishes two stages : a first stage during which nucleation of damage is
dominant and a second during which the existent damage propagates. The model was implemented in a
finite element program, which was subsequently used for the simulation of split Hopkinson bar experiments.
To validate the proposed material model and to determine the material parameters a series of experiments on
concrete were performed. Comparison of the experimental and numerical results showed an excellent
agreement for rates of deformation ranging from 1/s to 300/s.
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INTRODUCTION

When a quasi-brittle material such as concrete is subjected to an increasing tensile stress, the initial linear
elastic behaviour will soon be abandoned because of the creation of microcracks. The microstructure of the
material will gradually degrade by the nucleation and propagation of these microcracks. In the beginning,
the process of nucleation of microcracks is dominant; this is a stable stage. When the stress is further
increased new microcracks develop and the size of the existing cracks grows. After a while propagation of
existent microcracks becomes dominant; an equilibrium between stress and damage is only possible under
decreasing stress. This process is unstable.

The dynamic, tensile behaviour of concrete differs significantly from its static behaviour; in experiments
higher strengths, higher deformation capacities and higher energy-absorbing properties are observed at
higher rates of strain [1][2][3][4][5]. This can be explained by the fact that, when the load is applied very
slowly, the final rupture has the time to choose the way of least resistance; tougher aggregates are avoided
and the fracture goes through the weakest zone of the matrix. The development of microcracks in other



zones is limited. In dynamic circumstances however, fracture has to develop in a very short time period. A
lot of energy is put in the material in a very short time; as stresses are increasing very fast, cracks do not
have the same time to search for the weakest path and have to develop along shorter paths with higher
resistence; as a consequence higher strengths are observed. The high stresses in the material now also cause
microcracking in other zones, resulting in higher deformations in dynamic experiments.

In this contribution a material model for the dynamic, tensile behaviour of concrete is proposed [6]. The
description is based on damage mechanics. To validate the proposed material model and to determine the
material parameters series of experiments on concrete were performed. Because of practical considerations
a concrete ‘on scale’ (or microconcrete) was used. The results of the experiments are compared with
simulated results, using the finite element program in which the material model is implemented.

DEVELOPMENT OF THE DYNAMIC DAMAGE MODEL FOR TENSION

One basic assumption of the continuum damage mechanics is the fact that the irreversible changes in the
microstructure of a material due to the loading history and resulting in a degradation of the mechanical
behaviour of the material, can be described by an internal variable (or variables); the damage variable d (or
d, i=1, ..., n). Another essential assumption is that in the description of the mechanical behaviour of the
material, this material can be replaced by a fictitious, homogenous and continuous material. The full set of
all mathematical expressions describing the resulting mechanical behaviour of the fictitious material and the
evolution of damage is a damage model. An adequate damage model is able to predict the onset and
evolution of damage under variable circumstances.

The damage variables can be defined either in direct relation to the deficiencies which constitute the
damage, or in relation to the observable reduction in mechanical properties which the damage brings about.
The second, more phenomenological, approach is more often used, and was equally adopted here. In the
developed one-dimensional model a scalar damage variable d is used. Its physical meaning is related to the
reduction of stiffness of the damaged material, as follows :

E=E(1-d, o=Fe¢ (1)

with E; the modulus of elasticity of the undamaged material, E the modulus of the damaged material, o the
uniaxial stress and € the strain. Because of the irreversible nature of the degradation process d is always
increasing, and its value is obviously limited to the interval [0, 1].

Next to the choice of an appropriate damage variable, a law describing the evolution of this variable is
necessary : the damage law. The dynamic damage law presented in this paper starts from a static model.
Essential is also the fact that damage growth consists of two distinct contributions : a nucleation part
describing the creation of new microcracks and a propagation part describing the growth of the existent
damage.

In [7] Lemaitre-Chaboche proposed the following function for the increment of damage of concrete :

d(d) [i)% if ¢ > ¢ and de >0,
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(2)
dd =0 in other cases.

e, 18 a threshold value for the strain; below that value of the strain, no damage will occur. g, and s are
material constants.

When the strain is monotonicly increasing, the relation between stress and damage becomes :
+1\/(s+1
6 = E(1-d)e)(s + Dd + &' [ (3)

This equation gives a unique relationship between applied stress and damage; no strain rate or other effects
are taken into account. This equilibrium curve will only be followed during a static experiment with very
low rates of loading and is therefore called the static curve (see figure 1).



In a dynamic situation the point representing the state of stress and damage in figure 1 will no longer be
situated on the equilibrium curve, but above it; the damage evolution can’t follow the stress. The point will
tend to move down towards this curve. The higher the stress, or rather, the higher the available elastic
energy, the faster this motion will be. It is therefore reasonable to take the rate of damage proportional to the
difference in the square of the actual stress and the square of the stress of the equilibrium curve, both at the
same amount of damage of course. Introducing the parameters C, and C, to scale the process of nucleation
and propagation, this gives the following equation for the time derivate of the damage variable d :

d = dnucleatie +dpropagatie
2 2 2 2 (4)
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o is the actual stress, o, is the value of the static curve corresponding with the actual damage d and o, is
the maximum value of the static curve (see figure 1). The brackets ( ) mean that negative values are replaced
by zero, thus guaranteeing that only points above the static curve will cause damage growth.

The second term, the propagation term, is multiplied by a factor d, to express the simple fact that the more
damage 1s already present, the greater the possibility for growth. This allows to take into account the
instability of the growth process. Both terms are represented in figure 2 for a loading rate of 10/s. As can be
seen, after a while the propagation term dominates the damage process.
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Figure 1: Static tensile curve for concrete Figure 2: History of the contribution of the
derived from the model presented in [7]. nucleation and propagation to the growth of
damage. The rate of deformation is 10/s.

DETERMINATION OF THE MATERIAL PARAMETERS

The presented damage model contains 6 material parameters : E, ¢ , ¢, and s associated with the static

behaviour, C, and C, related to the dynamic behaviour.
The static parameters were determined as follows : the value of E; is derived from a static uniaxial tensile
test, for s the value 2 proposed in [7] is adopted, the value of ¢_ is derived from the value of the maximum

stress o, observed in the static experiments. Indeed, during the static experiments an almost perfect linear
behaviour is observed until 60 % of the maximum stress is reached. So, it can be concluded that under that
limit no damage of any importance will appear. A good estimate of ¢_ was found to be :

0.6 O\
& = ——— (5)

E,

g, 18 also deduced from the maximum value of the stress. Indeed, the maximum stress o_, can be written as

a function of's, ¢, ¢, and E :
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For each set of values fors, ¢, o, and E; more than one value of ¢, can be calculated from this expression,

but only one ¢, gives a value for d, (damage corresponding with ¢__ , see figure 1) in the interval [0, 1].

max ?

The damage model consisting of the equations (1) and (2) was implemented in the finite element program
IMPACT. IMPACT is a one dimensional program using an unconditionally stable time integration
algorithm. The program allows simulation of one-dimensional wave propagation problems. This enabled us
to simulate the behaviour of a specimen during a split Hopkinson experiment. During such an experiment
the specimen is subjected to a dynamic, uniaxial tensile load.

After incorporation in an optimisation routine, the simulated time histories were compared with
experimental results, and the initial values of the dynamic material model parameters C, and C, are
iteratively adapted [6]. Table 1 gives the values of the parameters for the microconcrete used in this study.
With these parameters an excellent agreement with the experiments is observed with loading rates in the
range of 2/s to 300/s, as will be shown in §4.

TABLE 1
MATERIAL MODEL PARAMETERS AND VALUE FOR o__ DERIVED FROM STATIC AND DYNAMIC EXPERIMENTS

E, (MPa) 29 850 & 5.436 10°
o, (MPa) 6.5 € 1.306 10
Cl 7 500 C2 45 000

EXPERIMENTAL TIME HISTORIES VERSUS NUMERICAL SIMULATIONS

As mentioned above split Hopkinson tensile bar experiments were performed on microconcrete specimen.
During an experiment, a cylindrical disk of microconcrete is glued between two long bars, the Hopkinson
bars, with the same diameter of the specimen. At the free end of one of the Hopkinson bars a tensile wave is
generated. This wave travels through the bar towards the specimen. Once the wave reaches the specimen,
the specimen is subjected to a dynamic, tensile stress, which is supposed to be purely uniaxial.

The history of the stress, the strain and the strain rate in a specimen during such an experiment is determined
by the applied tensile wave and by the mechanical properties of the Hopkinson bars and of the specimen.
The strain rate, strain and stress in a specimen during the experiment can be deduced from measurements on
the Hopkinson bars [8][9]. Figure 3 gives a typical history of the strain rate for (micro)concrete. Notice that
the strain rate is far from being constant in time. Figure 4 gives the corresponding strain. When loading of
the specimen is started, strain and strain rate will be homogeneous over the length of the specimen, after a
while the damage will concentrate in a small zone of the specimen, where also the deformation will localise.
Thus, the measured strain and strain rate of figures 3 and 4 have to be seen as mean values over the length of
the specimen. Figure 5 gives the stress history in the specimen. Figure 6 gives the corresponding stress-
Strain curve.
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Figure 3: Simulated and experimental history of

the rate of deformation in a specimen during a
split Hopkinson bar tensile experiment.
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Figure 4: Simulated and experimental history of
the deformation in a specimen during a split
Hopkinson bar tensile experiment.

Next to the experimental values, in figures 3 to 6 also the simulated values are plotted. These simulations are
obtained with the material constants mentioned in table 1 and 2. As can be seen an excellent agreement can
be observed. A simular agreement between experiments and numerical simulations can be demonstrated for
experiments conducted in other circumstances, and so other rates of deformation [6].
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Figure 5: Simulated and experimental history
of the stress in a specimen during a split
Hopkinson bar tensile experiment.
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Figure 6: Simulated and experimental history of
the stress as a function of the deformation in a
specimen during a split Hopkinson bar tensile

experiment.

Figure 7 gives the stress-strain curve for an experiment where lower rates of deformation are reached.
Notice the smaller value of the maximum stress, the smaller the value of the deformation corresponding with
the value of the maximum stress and the smaller the ultimate deformation. The experimentally observed
strain rate dependence is well reflected by the material model.
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Figure 7: Simulated and experimental history
of the stress as a function of the deformation in
a specimen during a split Hopkinson bar tensile
experiment.



CONCLUSIONS

An impact model within the framework of damage mechanics was developed for concrete. The model makes
a clear distinction between the nucleation of new damage and the propagation of existent damage. The
model starts from an existing static description. Future research will be performed to investigate if the
approach can be extended for the description of the dynamic behaviour of other materials. After all, starting
from a static curve valid for the considered material, the dynamic description can be derived in a simular
way as for the concrete model presented in this paper.

The presented model is suitable for implementation in a numerical program. The model contains some
parameters that were determined by means of experiments : static tensile tests allowed determination of the
parameters associated with the time independent behaviour and, by means of a combination of numerical
simulation and split Hopkinson tensile tests, the dynamic material parameters were determined.

The model proved to give an excellent agreement with experimental results. In the considered experiments
loading rates from 1/s to 300/s were reached, thus it can be stated that the model is valid in this range of
deformation rates.
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