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ABSTRACT 
 
  A improved element-free Galerkin method(EFGM) is used as the numerical tool for 
analyzing dynamic crack propagation problem in functional graded material(FGM). 
The Element-Free Galerkin Method(EFGM) suggested by T.Belytchko et al[1] is a 
meshless method, which uses the Moving Least-Squares(MLS) approximation based 
only on nodes. Since no element connectivity data is needed, the extension of the crack 
is then treated by the growth of the surfaces of the crack naturally and the remeshing is 
avoided. This makes the method particularly attractive for moving dynamic crack 
problems. In this paper, The shear modulus are assumed to vary continuously and 
Poisson’s ratio to be constant. The variation of the material properties is simulated by 
adopting the material properties of the integration point when forming the stiffness 
matrix. The dynamic J integral is evaluated. Some numerical results are provided to 
demonstrate the utility and robustness of the proposed technique. 
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INTRODUCTION 
 
   The functional graded materials(FGM) have been widely used in technological 
application . So, it is very important and necessary to study its mechanical behaviors, 
especially in the fracture mechanics. However the material properties of FGM vary 
with the coodinates, its mechanical behaviors is very complex. The analytical approach 



can only deal with some simple and particular problems. Therefore, numerical methods 
for FGM have to be developed. 
   The Element-Free Galerkin Method(EFGM)[1] suggested by T.Belytchko et al is a 
meshless method, which use the Moving Least-Squares(MLS) approximation based 
only on nodes. Since no element method connectivity data is needed and the extension 
of the crack is then treated by the growth of the surfaces of the crack naturally, it is very 
convenient for modeling the crack propagation. This method provides a higher 
resolution localized derives of strains and stresses.  Also it can adopt the material 
properties of integration points to simulate the variation of the material properties. So, it 
is very suitable to analyze FGM.  

However, in EFGM, the interpolants constructed by the MLS method does not pass 
through the nodal parameter values, the imposition of boundary conditions on the 
dependent variables is quite awkward and the computational cost is quite burdensome, 
which makes EFGM not as fast as FEM. In this paper, the EFGM is coupled to FEM. 
EFG models are only used near the crack tip where their great versatility and high 
resolution is needed, FE models are applied in the other domains. Therefore, the 
boundary conditions can be treated easily and directly by FE models. Meantime, the 
computation efficiency can be great improved.  
   Jin and Noda[2] have shown that the singularity and the angular distribution of the 
stress and displacement near-tip fields for FGM are same as the ones of homogeneous 
materials. Erdogan and Wu[3] have presented the analytical result. Jian.C et al have 
given a modified static integral for FGM. In this paper, based on Moran et al[4], a 
modified dynamic integral for FGM is calculated. Numerical results are provided to 
demonstrate the utility and robustness of the proposed technique. 
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Element-Free Galerkin Method(EFGM) and Its Coupling to finite elements 
    
  The most difference between the EFGM and the FEM is the construction of the shape 
functions and test functions. In the EFGM, the field variable is approximated by 
moving least square(MLS) approximations, no element connectivity data is needed, 
which is necessary in the FE method. The shape functions of EFGM can be written 
as[1]. 

                [ ]       )()()()( n21
1 ϕϕϕ L== − xBxAxpx TΦ                (1) 

The derives of Φ are expressed as: )(x

i
T

i
T

i
T

i
T

ix

,
1

,
11

,

,
1

,

)()()()()()()()()(           

)]()()([)(

xBxAxpxBxAxpxBxAxp

xBxAxp
−−−

−

++=

=Φ
 (2) 

where 

                                       (3) )()()()( 1
,

1
,

1 xAxAxAxA −−− −= ii

To impose boundry conditions with as high a degree of accuracy and improve the 



computation efficiency, the coupled EFG/FE approach is used. 

In the meshless domain , the MLS method is still adapted to construct the test 

function of ,  
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In the non-interface FEM domain FEΩ , the traditional FEM is used to construct the test 

function of ， fIx
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here ND is the number of element nodes.  

For the FEM point  in the interface zonebIx BΩ , we also use the MLS method, 
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In the FEM domain, the test function can be expressed as, 
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     With these test functions, mass matrix and stiffness matrix can be formed in general 
way, and boundary conditions can be enforced strictly. Since background finite element 
is used for quadrature in meshless domain, it is very convenient that in the procedure of 
numerical implementation, the material properties of the integration point are adopted 
not only in finite element domain but also in meshless domain.     
 
 
NUMERICAL EXAMPLE 
 
   A single cracked panel (SECP, Fig.1) of unit thickness in elastic plane stress 
conditions is considered.  
  l  and  are the length and the width of the plate. is the edge crack. Poisson’s ratio w a

υ  and mass density ρ  are constant. Young’s modulus is given by the following 

expressions: 
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Fig.2  Node distribution  
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Fig.2  A single edge FGM panel  

   The distribution of nodes is like fig.2 . The plate is divided  into 30×40 elements, 
including the background finite elements only for quadrature. The number of all nodes 
is 1271. The nodes of the EFGM is only distributed near the crack tip. The meshless 
domain is divided into 30×4 background finite elements mesh. The rest of the plate is 
divided into 30×36 finite elements. The nearer to the crack surface, the finer the nodes 
are distributed along Y . Otherwise, the material properties vary along X , so finer 
nodes are distributed along X  than along Y . 
  integral is often used to evaluate the stress intensity factor. Based on Moran[5], we 
obstaine modified dynamic integral for FGM  
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homogeneous materials, since =ijklD 01,，and =ρ ，the term vanishes. 

      In term of (9), we evaluate the dynamic integral for FGM on two different 

contour  and Γ  with increment of the time step. The numerical results are drawn in 
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Fig. 3.  
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Fig.3  Variation of J integral with time step  
 
 
      These curves in fig.3 show that when the strength waves don’t reach crack surface, 
the value of integral is zero, when the strength waves reach crack surface, the value 
of integral become increasing. Because the velocity of strength waves varies with the 

Young’s modulus, a little difference between the integral along 

J
J

J 1Γ  and the integral 

along  exists. However, when the strength waves influence the whole area for 

evaluation, the values of the integral on contour 

J

2Γ

J 1Γ  and 2Γ  are almost equal, namely 

the integral is path independent. So, the trend of variation of the integral is rational. 
The results show that the method in the paper is efficient for FGM. 
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CONCLUSION 

 
In this paper, EFGM is used for analyzing dynamic fracture problem in FGM and 

meanwhile, EFGM is coupled to FE for enforcing boundry conditions strictly and 
improving the computation efficiency. The numerical results show that the technique is 
efficient. Otherwise, in the procedure of forming mass matrix and stiffness matrix and 
evaluating the dynamic integral, we adopt the material properties of Gauss integration 
points. So, not as a great number of nodes are needed as in conventional technique for 
FGM. Not only computation efficiency is improved once again, but also high accuracy 
is achieved.   

J

    Since EFGM facilitates the modeling of growing crack problem, the technique 



proposed in the paper is promising in dealing with dynamic crack propagation of FGM.  
Although only Mode I cracks are reported, it is straightforward to employ this 

method to more complicated crack configurations. 
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