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ABSTRACT 
 
 The light weight and high specific strength magnesium alloys are important as structural materials. 
However, magnesium and magnesium alloys have low plastic formability and occur brittle fracture at room 
temperature, because their active slip systems are not sufficient. In the behaviors of slip deformation and 
dislocation motions, the critical and effective parameter is the generalized stacking fault (GSF) energy. The 
GSF energy is identified with the energy necessary to ideal slip, and shear strength of real materials should 
increase as the GSF energy increases. In HCP metals including magnesium, { 0001} < 112 0>  basal slip and 

  {101 0} < 112 0>  prismatic slip with 1/3  < 112 0>  a dislocations are well known and basal slip is active and 
dominant in magnesium. We employ ab initio pseudopotential method for magnesium to study accurate the 
GSF energies on basal and prismatic plane and discuss the difference between basal and prismatic slip. It is 
also investigated from the GSF energy that the dissociation with stable stacking fault of a dislocations on 
prismatic plane is not so clear. The calculated GSF energy on basal plane is much lower than that on 
prismatic plane. This result agrees with that the observed main slip system is basal slip in real magnesium.  
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INTRODUCTION 
 
 Recently the usage of magnesium alloys are increasing as light weight and high specific strength structural 
materials in automotive and aerospace industries. However, it is large problem that magnesium alloys have 
low plastic formability. The cause is that the active slip systems of magnesium are not sufficient near room 
temperature, and so it becomes low ductility. The ductility greatly depends on slip deformations and it is 
important to understand the deformation mechanism associated with the slip.  
 In HCP metals including magnesium,   {0001} < 112 0>  basal slip with the dislocations along the shortest 
Burgers vector a=1/3  < 112 0>  (so called a dislocations) is the most commonly known plastic deformation 
mode and this slip system is active and dominant in magnesium. For a general loading, it is not only basal 
slip but also other independent slip systems are needed to deform the polycrystalline materials. It has been 



reported that   {101 0} < 112 0>  prismatic slip, {1 01 1} < 112 0>  first order pyramidal slip and 

  {112 2} < 1 1 23>  second order pyramidal slip are also activated in magnesium at high temperature [1,2]. 
These slip systems are shown in Figure 1. Additionally, it is interesting that the dominant slip mode is 
different in HCP metals. For example, slip occurs preferentially on basal plane in Mg, Be, Cd and Zn, but 
prismatic slip is preferred in Ti, Y, Hf and Zr.  
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Figure 1: Slip systems in magnesium. 
 
 In slip deformations, the critical parameter is a property of the generalized stacking fault (GSF) energy 
which is also called γ -surface [3]. The GSF energy is defined as follows; a crystal is cut into two halves 
along the slip plane and one half is displaced relative to the other by the vector t. As this vector is varied, the 
energy changes and traces out the GSF energy  γ (t) , which is normally defined as energy differences from 
bulk crystal. If this vector are varied along with Burgers vector, the GSF energy is identified with the 
potential energy necessary to ideal slip. So shear strength of real materials should increase as the GSF energy 
increases. There exists a relationship between the GSF energy and the dislocation density or Peierl's stress 
[4]. Especially, the stable stacking fault energy which is the minimum of the GSF energy play a major role in 
the behavior of dislocation core. 

Legrand [5] calculated the GSF energy on basal and prismatic planes for various HCP metals including 
Mg using empirical pseudopotential method and tight-binding method. He found good agreements between 
the observed main slip system of various HCP metals and ratio of basal to prismatic stable stacking fault 
energy. It can be explained that the stable stacking fault energy is a dominant factor of the splitting width of 
the dislocation core and it is easy to slip as the energy is smaller. However, their calculations are based on 
the semi-empirical method and there is hardly quantitative and accurate investigations. Thus, in the present 
work we employ ab initio pseudopotential method for magnesium to study accurate GSF energy on basal 
and prismatic plane. 
 
 
METHODS 
 
 All calculations presented in this paper were performed using Cambridge Serial Total-Energy Package 
(CASTEP). CASTEP is an ab initio pseudopotential method code for the solution of the electronic ground 
state of periodic systems with the wavefunctions expanded in plane wave basis using a technique based on 
density functional theory (DFT) [6,7]. The electronic exchange-correlation energy is given by the 
generalized gradient approximation (GGA) of Perdew and Wang [8] in the DFT. We use the norm-
conserving pseudopotential of Troullier and Martins [9] in a reciprocal space. The pseudopotential is 
transformed to a separable form as suggested by Kleinman-Bylander [10]. The partial core correction [11] is 
also included in this pseudopotential. The electronic ground state is efficiently obtained using the conjugate-
gradient technique [12]. The cutoff energy for the plane-wave basis is 4.36× 10-17J (20Ry) which is sufficient 
for all our purposes. The stable atomic configurations are obtained through relaxation according to the 
Hellmann-Feynman forces. 
 The supercells containing 10 basal atomic layers and 12 prismatic atomic layers are used for the calculation 
of the GSF energies on basal and prismatic plane, respectively (see Figure 2). For basal and prismatic 
supercells, Brillouin zone integration over k points are performed using 12× 12× 2 and 11× 7× 3 regular 
divisions of each axis in reciprocal space, respectively.  
 The slip deformation occurs with dislocations along Burgers vector, but dislocations are dissociated to 



partial dislocations with stacking fault. Hence, it is important the GSF energy displaced by dissociated 
Burgers vector of partial dislocations, not simple Burgers vector of dislocations. We calculate the GSF 
energies displaced by vector t that changes continuously 0 to bp. The bp is dissociated Burgers vector of 
partial dislocations. The atomic layers are cut into two half halves parallel to basal or prismatic plane and 
one half is displaced by displacement vector t. The GSF energy  γ (t)  defined as 
 

     
   
γ (t) = E fault(t) −Ebulk

2A
,                               (1) 

 
where Ebulk is the total energy of supercell of magnesium bulk, Efault(t) is the total energy of supercell 
containing two generalized stacking faults displaced by vector t and A is the area of stacking fault per a 
supercell.  
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Figure 2: (a) Supercell for basal slip and (b) supercell for prismatic slip. 
 
 
RESULTS 
 
 When considering dislocation splitting in HCP metals, the situation is clear for a dislocations on basal plane 
which can always dissociate into Shockley-type partials. The dissociation of a dislocations is the splitting on 
basal planes according to the reaction 
 

          
 
1
3
< 112 0>= 1

3
< 101 0> +

1
3
< 011 0 > ,                        (2) 

 
with the I2 stacking fault between the partial dislocations. However, the dissociation of a dislocations on 
prismatic plane is not so clear. Using a hard-sphere model, Tyson [13] proposed the splitting  
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Vitek and Igarashi [14] suggest from the γ -surface calculations of empirical many-body potentials that the 
same dislocations may also split on prismatic planes according to the reaction 
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< 112 x > +

1
6
< 112 x > ,                        (4) 

 
where x varies from material to material.  
 We calculate the GSF energies displaced by the vector bp= 1/6[1  12 x], x is from 0 to 1.2, in order to 
examine the stable stacking fault point on prismatic plane. The results are shown in Figure 3. We find lowest 



energy stable stacking fault point bp=1/6[1 12 x] , x=0.76. Vitek and Igarashi [14] calculated x=0.9 by 
empirical many-body potentials but their value is different from our value. This difference is based on the 
difference between the calculation methods. The stable stacking fault energy is 255.1 mJ/m2 at x=0.76. From 
x=0.6 to x=0.9, this staking fault energy change little (~0.3 mJ/m2) . The stable stacking fault on prismatic 
plane may exist in some extent range. 
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Figure 3: The stable stacking fault energy on prismatic plane. 

 
 Then, we calculate the GSF energies displaced by t=1/6[1 01 0]u, with u from 0 to 1 on basal plane, and the 
GSF energies displaced by t=1/6  [112 x] u, x = 0.76, with u from 0 to 1 on prismatic plane. These are 
calculated by using the three different relaxation methods of atoms. First, the atomic relaxation 
perpendicular to the slip plane is allowed but parallel is not allowed at all. Second, the atoms of two layers 
constituting stacking fault are relaxed only perpendicular to the slip plane, while other atoms move freely in 
all directions. Third, the atoms of two layers constituting stacking fault are relaxed in all directions, while 
other atoms are relaxed only perpendicular to the slip plane. On both basal and prismatic plane, the GSF 
energies do not change very much by different three relaxation scheme. The results by third relaxation 
method are shown in Figure 4. The calculated GSF energy on basal plane is much lower than that of 
prismatic plane. This results agree with that the observed main slip system is basal slip in real magnesium.  
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Figure 4: The GSF energies on basal and prismatic slip. 

 
 The stable stacking fault energy on basal plane, which is the minimum of the GSF energy path, is 32.4 
mJ/m2. On prismatic plane, it is different from basal plane, and stable staking fault point is the peak of the 
GSF energy path. We summarize the stable stacking fault energies in Table 1, which also includes other 
theoretical values.  
 



 
TABLE 1 

THE STABLE STACKING FAULT ENERGIES ON BASAL AND PRISMATIC PLANE 
 

BASAL (mJ/m2) PRISMATIC (mJ/m2) 

32.4 255.1 

44a [15]  

30b [5] 125b [5] 
aAb initio pseudopotential method     bEmpirical pseudopotential method 

 
The result on basal plane is in good agreement with other theoretical values 30 mJ/m2 by empirical 
pseudopotential method of Legrand [5] and 44 mJ/m2 by ab initio pseudopotential method of Chetty and 
Weinert [15], while Chetty and Weinert calculated only the stable stacking fault energy, and not the GSF 
energies. However, the stable stacking fault energy on prismatic plane is 255.1 mJ/m2, and it is much 
different from 125 mJ/m2 by empirical pseudopotential method of Legrand [5]. In order to obtain accurate 
GSF or stable stacking fault energies, the precision is not sufficient by semi-empirical method, and so ab 
initio method is effective. 
 
 
SUMMARY 
 
 The GSF energies on basal and prismatic plane in magnesium has been studied by ab initio pseudopotential 
method. It is also investigated that the dissociation with the stable stacking fault of a dislocations on 
prismatic plane is not so clear. We find the lowest energy stable stacking fault point 1/6  [112 x] , x=0.76. The 
calculated GSF energy on basal plane is much lower than that on prismatic plane. This result agrees with that 
the observed main slip system is basal slip in real magnesium. The stable stacking fault energy, which is the 
minimum of the GSF energy, is 32.4 mJ/m2 on basal plane and 255.1 mJ/m2 on prismatic plane. In order to 
obtain accurate GSF or stable stacking fault energies, the precision is not sufficient by semi-empirical 
method, and so ab initio method is effective. In the future, much knowledge about slip systems will be 
obtained, if the similar calculations are performed on other slip planes or in other HCP metals. 
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