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ABSTRACT

 

Deformation patterns in solids are often characterized by self-similarity at the meso-level. In this paper, the
framework for the mechanics of heterogeneous solids, deformable over fractal subsets, is briefly outlined.
Mechanical quantities with non-integer physical dimensions are considered, i.e., the fractal stress [

 

σ

 

*] and
the fractal strain [

 

ε

 

*]. By means of the

 

 local fractional calculus

 

, the static and kinematic equations are
obtained. The extension of the Gauss-Green Theorem to fractional operators permits to demonstrate the
Principle of Virtual Work for fractal media. From the definition of the fractal elastic potential 

 

φ

 

*, the fractal
linear elastic relation is derived. Beyond the elastic limit, peculiar mechanisms of energy dissipation come
into play, providing the softening behaviour characterized by the fractal fracture energy 

 

G

 

F

 

*. The entire
process of deformation in heterogeneous bodies can thus be described by the fractal theory. In terms of the
fractal quantities it is possible to define a 

 

scale-independent cohesive law

 

 which represents a true material
property. It is also possible to calculate the size-dependence of the nominal quantities and, in particular, the
scaling of the critical displacement 

 

w

 

c

 

, which explains the increasing tail of the cohesive law with specimen
size, and that of the critical strain 

 

ε

 

c

 

, which explains the brittleness increase with specimen size. 
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INTRODUCTION: FRACTAL STRESS AND FRACTAL STRAIN

 

The singular stress flux through fractal media can be modelled by means of a 

 

lacunar

 

 fractal set 

 

A

 

* of dimen-
sion 

 

∆

 

σ

 

, with 

 

∆

 

σ

 

 

 

≤

 

 2. An original definition of the fractal stress 

 

σ

 

* acting upon lacunar domains was put for-
ward by Carpinteri [1] by applying the renormalization group procedure to the nominal stress tensor [

 

σ]

 

. The
fractal stress 

 

σ

 

*, whose dimensions are [F][L]

 

–(2–

 

d

 

σ

 

)

 

, is a scale-invariant quantity. For simplicity, a uniaxial
tensile field is considered in Figure 1. Note that, for the definition of 

 

σ

 

*, exactly as in the case of the classical
Cauchy stress, the limit:

, (1)

is supposed to exist and, eventually, to attain finite values at any singular point of the support 

 

A

 

*. This is math-
ematically possible for lacunar sets like that in Figure 1 (and also for rarefied point sets like Cantor sets) which,
although not compact, are dense in the surrounding of any singular point.

∆P ∆A∗⁄( )
∆A∗ 0→

lim



 

Figure 1

 

. Renormalization of the stress over a Sierpinski carpet (a) and scaling of the nominal stress (b).

The kinematical counterpart of the fractal stress is the 

 

fractal strain

 

 

 

ε

 

*. The starting assumption is that dis-
placement discontinuities can be localized on an infinite number of cross-sections, spreading throughout the
body [2]. Experimental investigations confirm the fractal character of deformation, for instance in metals (

 

slip
lines

 

 with cantorian structure [3]), and in highly stressed rock masses (

 

plastic shear bands

 

).

Considering the simplest uniaxial model, a slender bar subjected to tension, it can be argued that the horizontal
projection of the cross-sections where deformation localizes is a lacunar fractal set, with dimension between
zero and one. If the Cantor set (

 

∆

 

ε

 

 

 

≅

 

 0.631) is assumed as an archetype of the damage distribution, we may
speak of the 

 

fractal Cantor bar

 

 (Figure 2a). The dilation strain tends to concentrate into singular stretched re-
gions, while the rest of the body is practically undeformed. The displacement function can be represented by
a 

 

devil’s staircase

 

 graph, that is, by a singular fractal function which is constant everywhere except at the
points corresponding to a lacunar fractal set of zero Lebesgue measure (Figure 2b).

 

Figure 2

 

. Renormalization of the strain over a Cantor bar (a) and singular displacement function (b).

Let 

 

∆

 

ε

 

 = 1 – 

 

d

 

ε

 

 be the fractal dimension of the lacunar projection of the deformed sections. Since 

 

∆

 

ε

 

 

 

≤

 

 1, the
fractional decrement 

 

d

 

ε

 

 is always a number between 0.0 (corresponding to strain smeared along the bar) and
1.0 (corresponding to the maximum localization of strain, i.e., to localized fracture surfaces). By applying the
renormalization group procedure (see Figure 2a), the micro-scale description of displacement requires the
product of the fractal strain 

 

ε

 

* times the fractal measure 

 

b

 

0
(1–

 

d

 

ε

 

)

 

 of the support. The fractal strain 

 

ε

 

* is the
scale-independent parameter describing the kinematics of the fractal bar. Its physical dimensionality [L]

 

d

 

ε

 

 is
intermediate between that of a pure strain [L]

 

0 

 

and that of a displacement [L], and synthesizes the conceptual
transition between classical continuum mechanics (

 

d

 

ε

 

 = 0) and fracture mechanics (

 

d

 

ε

 

 = 1). Correspondingly,
the kinematical controlling parameter changes, from the nominal strain 

 

ε,

 

 to the crack opening displacement

 

w

 

. By varying the value of 

 

d

 

ε 

 

(e.g. for different loading levels), the evolution of strain localization can be cap-
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tured. The two limit situations are shown in Figure 3, the devil’s staircase being an intermediate situation with
dε ≅  0.369. While the first case represents the classical homogeneous elastic strain field, the second diagram
shows a single displacement discontinuity, e.g., the formation of a sharp fracture.

Figure 3. Homogeneous strain (a) and extremely localized deformation (b) over the bar (critical point). 

During a generic loading process, the mechanical work W* can be stored in the body as elastic strain energy
(conservative process) or dissipated on the infinite lacunar cross-sections where strain is localized (dissipa-
tive process). In any case, the fractal domain Ω*, with dimension 3–dω, where the mechanical work is pro-
duced, must be equal to the cartesian product of the lacunar cross-section with dimension 2–dσ, times its
cantorian projection with dimension 1–dε. Since the dimension of the product of two fractal sets is equal to
the sum of their dimensions, one obtains: , which yields the fundamental
relation among the exponents as:

. (2)

STATIC AND KINEMATIC EQUATIONS FOR FRACTAL MEDIA

Classical fractional calculus is based on nonlocal operators. Recently, Kolwankar and Gangal [4] have intro-
duced a new operator called local fractional integral. Let [xi, xi+1], i=0, ..., N–1, x0=a, xN=b, be a partition of
the interval [a, b], and xi* some suitable point of the interval [xi, xi+1]. Consider then a function f(x) defined
on a lacunar fractal set belonging to [a, b]. The fractal integral of order α of the function f(x) over the interval
[a, b] is defined as:

, (3)

where  is the unit function defined upon [xi, xi+1]. The fractal integral is a mathematical tool suitable
for the computation of fractal measures. In fact, it yields finite values of the measure if and only if the order
of integration is equal to the dimension of the fractal support of function f(x). Otherwise, its value is zero or
infinite, thus showing a behaviour analogous to the Hausdorff measure of a fractal set. Kolwankar and Gangal
[4] introduced also the local fractional derivative (LFD) of order α, whose definition is (0 < α < 1):

. (4)

Differently from the classical fractional derivative, the LFD is a function only of the f(x) values in the neigh-
borhood of the point y where it is calculated. The classical fractional derivative of a fractal function exists as
long as its order is less than the Hölder exponent characterizing the singularity. Instead, in the singular points,
the LFD (Eqn. (4)) is generally zero or infinite. It assumes a finite value only if the order α of derivation is
exactly equal to the Hölder exponent of the graph. For instance, in the case of the well-known devil’s stair-
case graph (Figure 2b) the LFD of order α=log2/log3 (i.e. equal to the dimension of the underlying middle-
third Cantor set) is zero everywhere except in the singularity points where it is finite.
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By means of the LFD, the fractal differential equations of kinematics and statics can be obtained [5]. The dis-
placement field maintains the dimension of length. The noninteger dimensions of the fractal strain are: [L]dε.
Therefore, it can be obtained by fractional differentiation of the displacement vector {η}, according to the
definition of LFD outlined above. The fractional differential operator [∂α] can be introduced, where the order
of differentiation is α=1–dε. Thereby, the kinematic equations for the fractal medium can be written, in the
vector notation, as:

. (5)

Classical strain is obtained when α=1 (dε=0). Instead, when α=0, strain is no longer homogeneously diffused
and reduces to localized displacement discontinuities. The intermediate situations are described by generic
values of α.

The static equations link the fractal stress vector {σ*} to the vector of body forces {F*}, which assumes non-
integer dimensions according to the fractal dimension of the deformable subset Ω*, [F][L]–(3–dω). On the
other hand, the dimensions of the fractal stress are [F][L]–(2–dσ). Therefore, the equilibrium equations can be
written, in the vector notation, as:

, (6)

where the static fractional differential operator [∂α]T
 is the transposed of the kinematic fractional differential

operator [∂α]. It is worth to observe that the fractional order of differentiation of the static operator in the
fractal medium is α=1–dε, the same as that of the kinematic operator (Eqn. (5)). This remarkable result is due
to the fundamental relation among the exponents (Eqn. (2)), and represents the Duality Principle for Fractal
Media. Finally, equivalence at the boundary of the body requires that the stress vector coincides with the
applied fractal boundary forces {p*} (with physical dimensions [F][L]–(2–dσ)):

. (7)

In the case of fractal bodies, [N]T
 can be defined, at any dense point of the boundary, as the cosine matrix of

the outward normal to the boundary of the initiator of the fractal body.

PRINCIPLE OF VIRTUAL WORK AND LINEAR ELASTIC LAW FOR FRACTAL MEDIA

Consider two arbitrary functions f(x, y, z) and g(x, y, z), defined in a fractal domain Ω*, with the same critical
order α. The general formula of local fractional integration by parts has been obtained by the authors [5] as:

, (8)

where Γ* is the boundary of the domain Ω*. This result extends the Gauss-Green Theorem to 3D fractal
domains. Based on Eqn. (8), the Principle of Virtual Work for fractal media was demonstrated [5]. It reads:

. (9)

Both sides of Eqn. (9) possess the dimensions of work ([F][L]), since the operators are fractional integrals
defined upon fractal domains. The external work may be done by fractal body forces {F*} and/or by fractal
tractions {p*} acting upon the boundary Γ* of the body. The internal work of deformation is defined as:

, with dimensions [F][L]–(2–dω). If the (initial) loading process is conservative (no dis-
sipation occurs in the material), and stress is a univocal function of strain, a fractal elastic potential φ* (func-
tion of the fractal strain {ε*}) can be considered. The components of the fractal stress vector {σ*} can
therefore be obtained by derivation:
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. (10)

Note that these are canonical first-order partial derivatives in the space of the fractal strains {ε*}. Performing
the Taylor expansion around the undeformed state, and neglecting higher order derivatives, the following bi-
linear form can be easily obtained:

, (11)

where [H*] is the Hessian matrix of the fractal elastic potential. Dimensional arguments show that the anom-
alous dimensions of [H*] are: . Thus, [H*] depends on both the dimensions of stress and
strain and, depending on the difference (dσ–dε), can be subjected to positive or negative size-effects. Each
term in [H*] is obtained as the second-order partial derivative of the elastic potential by the corresponding
fractal strain:

. (12)

From Eqns. (10) and (11), the linear elastic constitutive law for fractal media is provided as:

. (13)

SCALE INDEPENDENT COHESIVE CRACK LAW

After the initial elastic stage, when dε is close to 0, a nonlinear stage occurs, where damage and microcracking
begin to spread and dε grows. In concrete-like materials, strain localizes quite soon in a band, and the softening
stage comes into play. The cohesive law describes the decrement of the stress as a function of crack opening
displacement w. The original model is based on the assumption that both the critical crack opening displace-
ment wc and the ultimate strength σu are independent of the structural size. Unfortunately, experiments show
that this is not the case. Moreover, it is well-known that the area below the cohesive curve, i.e., the fracture
energy GF, is subjected to relevant positive size-effects [6].

Figure 4. Fractal elastic law (a), and fractal cohesive law (b). 

To overcome this limitation, the model associates to the fractal linear elastic law valid for the undamaged ma-
terial (Figure 4a), a softening relationship between fractal stress and fractal strain, assuming that σu* and εc*
are the true scale-independent limit parameters. It is interesting to note that the fractal fracture energy GF

*,
defined in [1, 6], can be obtained, by a fractional integral, as the area below the fractal softening diagram (Fig-
ure 4b):

. (14)
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During the softening regime, i.e. when most of the dissipation occurs, σ* decreases from the maximum value
σu* to 0, while ε* grows up to εc*. In the meantime, the non-damaged parts of the bar undergo elastic unload-
ing. We call the σ*-ε* diagram the fractal cohesive law, which is shown in Figure 4b. Contrarily to the clas-
sical cohesive law, which is sensitive to the structural size, this curve is scale-independent. Experimental tests
by van Mier & van Vliet [7] have shown that, with increasing the specimen size, the peak of the curve decreas-
es whereas the tail rises, i.e., tensile strength decreases while critical displacement increases. More in detail,
wc varies more rapidly than σu does. Therefore, an increase of the area beneath the cohesive law, i.e. of the
fracture energy, is observed. Thus, the experimental trends of σu, GF and wc confirm the assumptions of the
fractal model.

Figure 5. Size-effect tests [7]: stress-strain diagrams (a), cohesive curves (b) and fractal cohesive law (c).

The fractal model has been eventually compared with the uniaxial tensile tests described in [8]. The attention
was focused on the size-effect on the ultimate tensile stress and on the fracture energy and their values inter-
preted by means of fractal assumptions. The exponents of the scaling laws were deduced by fitting the exper-
imental results. In particular, they found the values dσ = 0.14 and dG = 0.38. The nominal σ - ε and σ - w
diagrams are reported in Figure 5a and 5b. Here, w is the displacement localized in the damage band, obtained
by subtracting from the total one the displacement due to elastic and inelastic pre-peak deformation. In addi-
tion, the value dε = 0.48 is provided by Eqn. (2), so that the fractal cohesive laws can be represented as in
Figure 5c. As expected, all the curves related to the single sizes tend to merge in a unique, scale-independent
cohesive law.
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