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ABSTRACT 
A new effective approach to estimate a tensile strength of materials with inhomogeneities was proposed. 
As the example, the calculation of ultimate strength for cast irons with graphite inclusions or inclusions of 
phosphide eutectic was carried out. The comparison with the known experimental data was done and 
good coincidence was shown. 
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INTRODUCTION 
The most of constructional materials are heterogeneous. They comprise cracks, cavities or impurities as 
the stress concentrators. Therefore, theoretical ultimate strength determination of materials in view of the 
presence of structural defects is an important scientific and technical problem. 
 
 
PROBLEM DEFINITION 
The elastic isotropic quasibrittle material with small volume content of structural defects is considered.  
We model such material by the infinite elastic body with the isolated cylindrical inclusion. It is assumed 
that G is the shear modulus, µ  - Poisson coefficient for basic material (named as matrix), G  is the shear 
modulus for inclusion and 

1

1µ  - its Poisson coefficient (the case of plane strain is supposed). Let's choose 
the system of rectangular Cartesian coordinates so that axis  coincides with a cylindrical axis of 
inclusion, and coordinate axes compound the right ternary. The inclusion cross section is described by the 
equation , where 

Oy

)x(hz ±= a≤x , cz ≤ , 1>>= caλ , a and c are the semiaxes of cylinder. It is 
assumed, that during deformation the inclusion is rigidly linked to a base material. At infinity, the body is 
loaded by uniformly tensile forces p along z-axis. The problem is to determine the value *pp = , for 
which the local fracture of a matrix or inclusion or separation process is begun. 
 
 
MATHEMATICAL MODEL OF ELASTIC INCLUSION DEFORMATION 
Using the model relationships [1], we obtain the following correspondences between stresses and 
displacements on the surfaces of the thin elastic inclusion under given loading:  
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where the symbols  and (  describe the jumps and sums of a function on passing through the 

surfaces of inclusion, i.e. , 
*][ *)

]A *
−+−+ +=−= AA)A(,AA[ * )x(hzAA ±=

± = ,  u  are  the 

components of a displacements vector  in inclusion; σ - are the constituents of a vector of stresses 
inside a defect. Eqn. 1 can describe all kinds of elastic inclusion deformations. If  G  or 

11
zx u,
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zzxz ,σ

1 = ∞→1G  the 
dependences for a cavity or an absolutely rigid inclusion respectively can be obtained from Eqn. 1. The 
system of dependences forms the mathematical model of elastic inclusion deformation. 
 
 
STRESSED STATE DETERMINATION IN A BODY WITH INCLUSION 
At first we present [2] the elastic problem for a body with thin inclusion as a composition of two 
problems: the problem a) for the homogeneous body under the given applied external loading inducing 
the vector of stresses ( )o

zz
o
xz

o
z , σσσ

r , and the problem b) for the body with the cavity 

subjected to unknown stresses { ∞<<∞−±= y),x(hz } 1
z

o
zz

~ σ+σ−=σ
rrr

 on inclusion surfaces. We 

represent the displacement vector as the sum )u,u(u)u~,u~(u~)u, zxzu(u o
z

o
x

o
x

rrr
+= . Using the 

supposition about thinness of inclusion we can replace [1] a task b) by the singular problem c) for the 
body with the mathematical cut { <<∞− y }∞ )≤ ,ax     with the stresses ~,~(~

zzxzz σσ    σ
r

 applied to it 
surfaces.  

The solution of problem a) is known: 
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Using Fourier integral transformation the solution of the problem c) can be obtained [3] in kind of such 
dependences concerning the stress and displacement jumps on the inclusions surfaces.  
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Here and further symbol prime means the derivate on x. 
Substituting Eqn. 3 to Eqn. 1 we obtain the system of singular integro-differential equations for unknown 
vectors *z ]~[σ

r
 and *]u~[

r
 in such form 
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where  - are known [4] coefficients depended by the elastic modules of inclusion; 
 - are  known functions defined by the solution of task a). When we’ll solve Eqn. 4 we calculate 

the stress intensity factor 

231211 B,B,B  ...,  

21 M,M   

IK  for the problem c) using the expression [1] 
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For a finding the stress distribution in basic material near the inclusion we use the formula [5] 
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Here  is the radius of curvature in top of defect; ρ xx

~σ  are the end stresses inside inclusion defined [5] by 

the stresses jump *xz ]~[σ  
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The normal stresses inside inclusion we obtain by means of Eqns. 2 and 3.  
 
 
A LOCAL FRACTURE CRITERION 
Using the first theory of strength we receive that in body a limit equilibrium state will be occur if even 
one of values the stress in a body near inclusion or inside defect else the stress on a intermediate contact 
surface attain their ultimate strength, i.e. 
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where  are maxima of stresses in a matrix, inside inclusion and on contact, 

respectively;  σ are values of corresponding ultimate strength. 
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SOLUTIONS OF APPLIED PROBLEMS 
Using the results of pre-previous paragraph we’ll obtain such formulae for stress concentration and 

stresses inside defect in the case of isolated elliptical 




λ−= 22 xa)x(h  tunnel inclusion in infinite 

body. 
Analysis of Eqn. 6 shows that in the case G G<1  maximum of stresses zzσ  is attained at 

points ax ±= . Then 
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or for elliptical inclusion ( 2λ=ρ a ) we find 
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where designations were accepted as 
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In the case G  maximum of stresses G≥1 zzσ  is attained at point 

)K(]a( K)~[x~ Ixx 231 σπρρ−=  I4ρ+  (see Eqn. 6) and it is equal to 
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By means of Eqns. 8, 9, 10 and 13 the value of  can be calculated for given materials. *p

In the case of quasibrittle material with a great volume content of inclusions we shall use 
the model of infinite body with double periodical system of elliptic cylindrical inclusions, see Figure 1. 
Thus, at first we solve a problem for a periodic system of coplanar inclusions in a body. In this case the 

kern of Eqn. 4 )xt()x,t(L −= 1   was replaced by the kern 
11

11 d
)xt(ctg

d
)d,x,t(L −ππ
=     and the 

problem solution was obtained by a little parameter decomposition method. 
 

 
 

Figure 1: The schema of material with the great volume content of inclusions 
 
Then we solve an elastic problem for a body with periodical system of parallel elliptical cylindrical 
inclusions. In this case the kern )xt()x,t(L −= 1   of Eqn. 4 will be replaced by the kern 
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by the similar way. Thus using the method of boundary interpolation [6] we find the solution of the 
problem for a body with double periodical system of associated inclusions. If we shall assume that a 
quasibrittle matrix damages first of all (as experiments show) we get the values of the tensile strength for 
such material with the associated inclusions by means of Eqn. 8: 
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where 
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The comparison the theoretical values of tensile strength obtained by Eqn. 14 with famous 

[7] experimental data for cast-irons with graphite inclusions was carried out. Experimental results were 
obtained for different cast-iron alloys with 4% mass content of carbon and diverse forms of graphite 
inclusions – from circular to laminar mode (see symbols ∇, �, ο at Figure 2). It is easy to convince 
somebody that there is a close correspondence between calculated and experimental results.  
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Figure 2: The comparison of theoretical tensile strength determination  

and experimental data for grey cast-iron with graphite inclusions  
 
We also elaborated the estimation of tensile strength values for cast-irons with various mass content of 
phosphorus. At increasing a content of phosphorus the phosphide eutectic inclusions are formed. 
Experiments for grey cast-irons with phosphide eutectic were carried out at Technical University of 
Zaporizhzhya (Ukraine) under the leadership of prof. Volchok I.P. We made a comparison between the 
theoretical results and experimental data by means of such values of parameters: 

10116510470 11
1 ÷=λ==µ==µ=σ     MPa,80G  0.25,  GPa,         MPa, G,.B . A close correspondence 

between calculated and experimental results was obtained once again. 
 
 
CONCLUSIONS 

1. A mathematical model of elastic inclusion deformation of arbitrary relative rigidity was proposed. 
2. A stressed state determination of a body with thin elastic inclusion was carried out. 
3. A fracture criterion for quasibrittle materials with inhomogeneities was stated. 



4. Using the methods of boundary interpolation and a little parameter decomposition the stress 
concentration in a material with double periodical system of associated elliptic inclusions was 
calculated. 

5. The formula for the tensile strength determination of quasibrittle materials with great volume 
content of inclusions was proposed. 

6. The comparison the theoretical values of tensile strength for cast-irons with graphite inclusions or 
the inclusions of phosphide eutectic with the known experimental data were carried out. A close 
correspondence between them was attained. 
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