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ABSTRACT 
 
In this paper, we present efficient numerical formulations for the analyses of particulate composites, 
underging meso-structural changes such as particle fracture, stress induced phase transformation, etc. The 
formulations are derived based on the homogenization method and the boundary element method (BEM). 
Proposed formulations can efficiently deal with problems, in which particles randomly distribute and 
orient in the composites, by combining analytical solutions for the ellipsoidal inclusions such as 
Eshelby’s tensor and the boundary element method. Hence, there is no need to carry out any numerical 
integrations for the particles. Proposed numerical methods are computationally efficient and accurate. The 
formulations and numerical results for effective elastic moduli of composites and problems of particle 
fracture and stress induced phase transformation, are presented.  
 
 
INTRODUCTION 
 
In this paper, efficient boundary element formulations (see [1-6] for the boundary element method) for 
solids containing ellipsoidal inclusions/particles, as shown in Fig. 1, are presented (see Ashby [7] for 
various types of composite materials). First, a boundary element based formulation for homogenization 
analysis is discussed and is combined with analytical solutions for ellipsoidal inclusions in which constant 
initial strains are specified inside of them. A special case of the analytical solutions is given as the well 
known Eshelby’s tensor [8,9]. The analytical solutions for ellipsoidal inclusions such as Eshelby’s tensor, 
are based on the fundamental solution of linear isotropic elasticity, which is also used in the boundary 
element method as its kernel functions. The analytic solutions and boundary element formulation can 
easily be combined. 
 
Homogenization method [10-12] based on the finite 
element method has been applied to a various class of 
problems, such as identifying macroscopic elastic moduli 
and nonlinear behavior of meso-structure for a prescribed 
macroscopic deformation mode. Homogenization method 
assumes that the microstructure of solid is spatially 
periodic, and finite element analyses for a unit of periodic 
structure (unit cell) are carried out. However, the 
homogenization method can not be applied to the problems 
of particulate composite materials in a straight forward 
manner, since the orientations and distributions of particles 
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Figure 1: Particulate composite material 



would be somewhat random. Therefore, defining a unit cell model containing one or a few particles may 
be an over simplification of the problem. To accurately model such solids, a unit cell containing many 
particles should be analyzed. Thus, one needs to build and carry out analyses for a unit cell model having 
tens and hundreds of particles. Finite element model, which is required for such analyses, would be 
gigantic. Generating the finite element model as well as solving the problem would pose many problems. 
However, mechanical interactions between the particles, and between matrix material and particles are 
fully accounted for, when the finite element method is adopted. 
 
On the other hand, methodologies in micromechanics, such as self-consistent method [9,13,14] and 
Mori-Tanaka theory [9,15] have been presented. For particulate composites, Eshelby’s tensor [8,9], takes 
a central role (see, for example, [9,16,17]). These methodologies have advantages over the finite element 
method such that the effective mechanical behaviors of composites can be estimated in a closed or 
semi-closed form, based on the elastic moduli of matrix and particles, the distribution, orientation and 
volume fraction of the particles. Large scale computations are not required. However the methods in 
micromechanics do not account for detailed mechanical interactions between the distributed particles. The 
mechanical interactions may have significant roles when the particles are densely distributed or when we 
attempt to account for the damage evolution or meso-structural changes, such as phase transformation of 
the particles.  
 
Boundary element based homogenization formulation, which is developed in this paper, have advantages 
of both the above mentioned methodologies. Since the method is based on the boundary element method 
(BEM [1-6]), detailed mechanical interactions between all the material constituents can be accounted for. 
This nature is similar to that of the finite element method. A unit cell modeled by the boundary element 
method can contain many particles and the computation is simplified by using analytical solutions for 
ellipsoidal inclusions, such as Eshelby’s tensor [8,9]. In this regard, proposed method is similar to the 
methodologies in micromechanics.  
 
 
HOMOGENIZATION FORMULATION FOR PARTICULATE COMPOSITES 
 
In this section, equation formulations for boundary element based homogenization analysis for particulate 
composites are briefly discussed (see [18,19] for homogenization method based on BEM). In 
homogenization method, the microstructure of solid is assumed to be spatially periodic, as shown in Fig. 
2. A unit of the periodic  microstructure is modeled by the boundary element method and is called “unit 
cell”. As shown in Fig.1 in a two dimensional illustration, the size of the unit cell is represented by ε . We 
introduce two different coordinate systems. One is ix  coordinate system, which is fixed in space and the 
other is iy  coordinate system, which is scaled by the size ε  of unit cell, as: 
 

iii cxy += ε    (1) 
 
where ic  are the components of an arbitrary vector. 
Displacements iu are expressed by the two scale 
asymptotic expansion, by following Guedes and 
Kikuchi [10], as: 
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For small deformation linear elasticity problem, 
Hooke’s law and the equation of linear momentum 
balance are written to be: 
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Figure 2: Two dimensional illustration for a solid 
whose microstructure is periodic and its unit cell. 



where lijkE  are the fourth order tensor, representing Hooke’s law. Based on Eqns. (2) and (3), it can be 

shown that ( )xuu o
i

o
i =  [ o

iu  are the functions of ix  only.], and one can obtain an integral equation 
formulation for 1

iu  for the analysis of unit cell (see Okada et al. [19] for the derivation).  
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where lkε  are the fictitious initial strains, which are defined by,  
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Displacements 1

iu  at the source point Y
mξ  is evaluated by the integral equation (4). A two phase 

composite material is assumed and elastic constants for matrix and second phase materials are represented 
by M

ijkE l  and ∗
lijkE , respectively. ∗

ipu  and ∗
ipt  are the Kelvin solutions (see [4]). Y  and Y∂  represent 

the domain and boundary of the unit cell. *Y  denotes the region of second phase material in Y .  
 
We assume that the solid contains ellipsoidal particles as its second phase material and that the stresses 
and strains are constant values inside a particle, by following the result of Eshelby [8] and many of 
micromechanics analyses [9,17]. We then rewrite the volume integral term of integral equation (4), as: 
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where ( )Y

m
I
pij ξΛ  are the analytical expressions for the integral (see Mura[9]) and I

klε  are the fictitious 
initial strain in the Ith particle. Thus, we write: 
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When the source point Y

iξ  is at the interior of the Jth particle, we can derive an integral equation for the 
displacement gradients ji yu ∂∂ ˆ , by differentiating Eqn. (7) with respect to Y

iξ , as: 
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where J

pqkS l  are the components of Eshelby’s tensor [8,9] for the Jth particle. Singular volume integrals, 
whose numerical evaluations are known to be troublesome, are replaced by the analytical formulae such 
as Eshelby’s tensor. Therefore, proposed integral equations are computationally efficient and accurate.  
 
Taking the last term in Eqn. (7) as the forcing term and following the standard boundary element analysis 
procedures by imposing the so called periodic boundary conditions on displacements 1

iu  and tractions 
Y
it , we can evaluate the displacements and tractions at the boundary of the unit cell. An initial strain 

iteration method is adopted to obtain the equilibrium (see [5,6] for the initial strain iteration for solving 
elastic-plastic problems using BEM). Thus, the solutions for given j

o
i xu ∂∂  are obtained. We repeat the 

analyses for six times for a three dimensional problem to determine the responses of microstructure to all 
the macroscopic deformation modes (six strain modes). The characteristic functions ( )ylikF , which relate 

j
o
i xu ∂∂  to 1

iu , and the effective elastic moduli H
ijkE l  of the composite are written to be:  
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ANALYSIS FOR PROGRESSIVE DAMAGE (MESO-STRACTURAL CHANGE) 
 
Here, we deal with the problems of particle fracture and of the stress induced phase transformation of 
particles (see [17,20] for stress induced phase transformation). We make small extensions on the integral 
equations (7) and (8), as follows. 
 
Particle Fracture 
An incremental analysis is carried out for the problems of particle fracture. The simplest scenario is 
assumed that when the stresses in a particle satisfy a criterion for particle fracture, the elastic modulus of 
the particle reduces to zero (in actual calculation, the elastic modulus is reduced to be 1/1000 of the 
original value). Therefore, the analysis is entirely based on the elastic analysis for the unit cell. The 
integral equations, which are developed in the previous section, are applied by specifying different elastic 
moduli for fractured and unfractured particles. Algorithms for the analysis are shown in Fig. 3. 
 
Stress Induced Phase Transformation of Particles 
The problems of dilatational stress induced phase transformation (see Okada et al. [17]) are considered 
and an incremental algorithm is adopted. It is assumed that at the instance, when hydrostatic stress ( 3kkσ ) 
inside a particle reaches a critical value, the particle transforms its phase and dilatational transformation 
strain is produced. The dilatational transformation strain is modeled as an additional initial strain. The 
integral equations [Eqns. (7) and (8)] are modified to include the effects of the transformation strain, as: 
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where I

ijε  are fictitious initial strains, which are related to the dilatational transformation strain tε , as: 

Start (all the particles have original properties): set load factor  α=0

Homogenization analysis for given ∂ui
o ∂x j

Update load factor  α  to satisfy the particle 
fracture criteron in a particle (K=1,2,3,...,N) 

Evaluate macroscopic stresses

Reducing the elastic moduli of the fractured 
particle by 1/1000

Evaluate macroscopic stresses 
1st step

  α × σ ij ∂um
o ∂xn( )  

  α × σ ij ∂um
o ∂xn( )  

  f α × σij
K ∂um

o ∂xn( )( )  =  CCheck if: 
(excluding fractured ones)

 
Figure 3: Algorithms for the analysis of problem 

of particle fracture 

Start (all the particles are not transformed): set load factor  α=0

Homogenization analysis for given ∂ui
o ∂x j

Update load factor  α  to satisfy the phase 
transformation criteron in a particle (K=1,2,3,...,N)

Evaluate macroscopic stresses

Assign additional trasnformation strains to 
the transformed particle

Evaluate macroscopic stresses 
1st step   α × σ ij ∂um

o ∂xn( )  

  α × σ ij ∂um
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Figure 4: Algorithms for the analysis of problem of 

stress induced phase transformation 
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The effective stress for the solid can be given as average values of stresses in the unit cell, as:  
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Algorithms for the analysis of the stress induced phase transformation problem are given in Fig. 4. 
 
 
RESULTS OF NUMERICAL ANALYSIS 
 
A limited number of numerical results are presented in this section due to the restriction of pages (results 
for the problem of particle fracture are omitted.). Unit cell models used for numerical computations are 
shown in Fig. 5. Randomly distributed spherical particles are assumed. The volume fraction of the 
particles is about 10%, and the number of the particles are 27 and 125. Linear quadrilateral boundary 
elements are used. Total number of boundary elements on each face of the unit cell is 36 (6 x 6). 
 
Evaluation for Effective Elastic Moduli 
The results are shown in Fig. 6. Isotropic elasticity is assumed for the particles and the ratio of Young’s 
moduli of matrix and particles are varied from 10-3 to 103. Poisson’s ratio is assumed to be 0.3 for both 
the material constituents. Results, which are analyzed by the 125 particle model, are presented. 
 
For a comparison purpose, the results obtained by using self-consistent method and Eshelby’s method 
theory (see Mura [9]) are also plotted in the figures. The results by three different methods are within an 
agreement. Though exact solutions are not known, three different methods are within a reasonable 
agreement and, therefore, the proposed technique is, at least, proven to be reliable. 
 
Stress Induced Dilatational Transformation 
Relationships between the effective hydrostatic stress ( 3kkσ ) and effective dilatational strain ( i

o
i xu ∂∂ ), 

when Young’s moduli of matrix and of particles are set to be the same, are shown in Fig. 7. Dilatational 
transformation strain is assumed to be 05.0=t

kkε  and the phase transformation is assumed to take place 
when the hydrostatic stress in a particle reaches transformation stress Tσ . The elastic moduli for matrix 
and particles are set to be the same in this case. 
 
The stress-strain relationships follow zigzag paths and have negative slopes while the phase 
transformation is undergoing. The path is smoother for the 125 particle model than for the 27 particle one.  
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(a)                    (b) 
 

Figure 6: The results for effective elastic moduli (125 
particles). (a) Bulk modulus, (b) Shear modulus. 

     
 

(a)                  (b) 
 

Figure 5: Distributions of spherical 
particles in the unit cell. (a) 27 particles 
whose volume fraction is 0.1, (b) 125 

particles whose volume fraction is 0.089 



CONCLUDING REMARKS 
 
In this paper, a new but simple method for the analysis of particulate composite material is presented. 
Though the numerical results, which are presented here, are rather limited, the method is proven to be 
quite effective. If one carried out a three dimensional analysis with 125 randomly distributed particles in a 
unit cell using the finite element method, a large scale computation must be carried out and the state of art 
mesh generation software would be necessary for the generation of analysis model. All the numerical 
analyses, which are presented in this paper are carried out using a workstation within a reasonable amount 
of computational time. Therefore, it can be concluded that present numerical technique can deal with the 
meso-mechanics problems of particulate composites effectively and efficiently. 
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                  (a)                                    (b) 
Figure 7: Hydrostatic pressure stress-dilatational strain curves for the problems of stress induced 
phase transformation. (a) 27 spherical particles, (b) 125 spherical particles. The straight lines are 

stress-strain curves following the results of Ramakrishnan, Okada and Atluri [20]. 


