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ABSTRACT

In this article the interaction between elastic cracks, dislocation
cracks, slip bands and each of them were studied for the following
cases: (1) Interaction of two collinear asymmetrical elastic cracks,

(2) Interaction between an elastic crack and a slip band on the same
plane, (3) Interaction of two collinear dislocation cracks in the case of
the Bullough-Gilman type cracks and in the case of the Cottrell type
cracks, (4) Interaction between an elastic crack and a dislocation crack
of the Cottrell type on the same plane. From comparison of the results,
characteristics of interaction in each case will be clarified.

§1. INTRODUCTION

It is reasonable to consider that fracture of a solid is caused, on the
microscopic scale at least, by interaction of defects such as microcracks,
inclusions, slip bands and twins. Therefore it is important to study the
effect of interaction between these defects on the fracture Strength. Many

and a summary of those was given in a paper by Barenblatt!), Also,
several cases of the relaxed cracks (the elastic-plastic cracks) were

studied recentlyz)‘6). The interaction of parallel slip bands was dis—

cussed by Stroh”), The interaction of parallel elastic cracks and

the interaction of an infinite row of collinear dislocation cracks19) have
been studied based on the concept of continuous distribution of infini-
tesimal dislocations.

In the present article, the following cases will be studied. (1) Inter-
action of two collinear asymmetrical elastic cracks, (2) Interaction between
an elastic crack and a slip band on the same plane, (3) Interaction of two
collinear dislocation cracks in the case of the Bullough-Gilman type cracks

and in the case of the Cottrell type cracks] O), (4) Interaction between
an elastic crack and a dislocation crack of the Cottrell type on the same
plane. The method was based or the concept of continuous distribution
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of infinitesimal dislocations!1)12)1 3). As a fracture criterion, the
energy criterion!4) was used.

§2. INTERACTICN GF TWO COLLINEAR ASYMMETRICAL
ELLASTIC CRACKS

Consider arn infinite elastic solid with two collinear asymmetrical
elastic cracks subject to an applied stress Oy =0 at infinity as shown
in Fig.2.1. Let's call the right crack with length L(=za- b) the
first crack and the left crack with length r(= ¢ - d) the secord crack.

It is supposed that £ 2Zr. t(=b - c)is the distance between the inside
tips. These cracks can be simulated by an appropriate continuous dis—
tribution of infinitesimal dislocations as depicted in Fig., 2.1. Let f(x)
be the distribution function of dislocations (dislocation density) with the
convention that f(x) is positive in regions where the dislocations are
positive and vice versa. From the requirement for equilibrium of each
dislocation, f( ) must satisfy the following condition for all points x in
the regions (d,c) and (b,a):

Al HO 4345 =0, (2.1)

where A = G)L/[2T[ (1-¥)), G is the shear modulus, V) is Poisson's ratio
and )\ is the Burgers vector of a unit dislocation. D is the regions
(d,c) and (b,a). The boundary conditions are that f(x) is unbounded at
x =a,b,cand d. Eq.(2.1) may be solved by a method due to Muskheli-

shvilil3 as:
j J(i—aXs’—bXE-CI? ) 4

F0= ‘A Joe a)a—b)(x-cxl—d)

QA () (2 . 2)
J(X=aXx=bXa=XX~d) 1

where Q1(x) is an unfixed polynominal of degree not greater than unity.

Q1(x) is determined from the supplementary condition that crack openings
are zero at the crack tips, i.e.,

| feodx=0 (2.3)

c
[, fwdx=0. (2,4}
From Egs.(2.2), (2.3) and (2.4), Qq(x) is determined as:
[(a—b—cﬂi) @-b-d) Kk)-E(k) ]
" ,

Qi(x) =~ = > K0 (2.5)

where i*= -1 . Thus, f(x) is:
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fx) =3 %— : L
A J~(x-a)o=bX x-x-4)
y [Zz_ Atbtcrd y  adshe | @-q(b-4) Kk)- E(ﬂ)] (2.6)
Z 7 z K(k) ’
where the negative and positive signs are for the region (b,a) and for
the region (d,c) respectively. K(k) and E(k) are the complete elliptic
integrals of the flrst and the second kinds with the modulus k =

a-b)(c-a) [(a -c)(b- ﬂrespectlvely.
Next, the stress Oy onthe y = 0 plane is calculated for ¢<x < b

AL R

_ -5 [ 2_ Atbtctd o
[0 =X ) <
L _adtbe | @-cXb-d) KE)- E(fé)] (2.7)
2 2 KR,

Let N(b) and N(c) be the stress intensity factors at the tips x = b and
X = ¢ respectively. These are calculated from Eq.(2.7) as

0 [ bd KR)~E(®)
N =3 @b [(a—b)—(a—c)w] (2.8)

K()-E(e
N =T[5 ey [c-d)-6-4 K(&T‘)].

The calculated values of the ratio N(c)/N(b) are shown in Fiz.2.2 as a
function of £, r and t. From Fig. 2.2 it is seen that N(b) ZN(c).
Therefore it is concluded that crack propagation is generally initiated
by the first crack

Now, let 0'2 be the stress required for propagation of the first crack,
which occurs when the following condition is satisfied:

___”(’C—%W N + 2% = 0. (2.10)

From Egs. (2.8) and (2.10), Gé is obtained as:

[ [_36¥ At )7 K(®)-E®) ;
(0] Tr(l—\)) f+t]/[g (I t) K(ﬁ’-) J. (_.11)

When f = r, Eq.(2.11) reduces to the result for two collinear symmetrical
elastic cracks derived by Wilmore If the second crack does not
exist, 0’2 reduces to 0_'1 which is obtamau by t >0 in Eq. (2.11) a

_ [ 8&¥
Or = TU-w){ . i< 8

When the applied stress reachesdé, two cracks join as a result of
propagation of the first crack. Let 04 be the stress required for pro-
pagation of the joined crack. 0’2 is obtained by replacing £ with ( £+
r +t)in Eq. (2.12) as:
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6, = | ___86¥ )
z TA-VXL+r+t) | \24113)

Now, osthe fracture stress of the solid is determined by the larger
of 2 and O2. The ratio 05/07 is calculated by Eqs. (2.11), (2.12) and
(2.13). This ratio gives a measure of amount by which the solid with
the first crack only is weakened by appearance of the second crack. The
results are shown in Figs 2.3,

From Fig, 2.3 it is seen that the effect of the second crack length is
remarkable when the distance between the inside tips is small, Next,
in the case of two collinear symmetrical cracks, if the distance between
the inside tips exceeds the crack length, the change in the fracture
Strength due to the interaction becomes at most 5% and in this sense the
interaction may be neglected.16 Let's consider this point for the case
of two collinear asymmetrical cracks, Using Fig. 2.3 we obtain the
result of Fig, 2,4 which shows the critical distance with which the change
in the fracture Strength due to interaction is at most 5% (that is, 0‘2/0“1
2 0.95). From Fig. 2.4 it is concluded that the interaction may be
neglected in the above mentioned sense if the distance between the inside
tips exceeds the second crack length, Next, when the distance between
the inside tipsis smaller than a certain value, 65 becomes larger than
5 and therefore the two cracks can be regarded as one joined crack as
far as the fracture strength is concerned. This critical distance is
about 10% of the first crack length nearly independent of the second crack
length as Fig. 2.3 shows.

§3. INTERACTION BETWEEN AN ELASTIC CRACK AND A
SLIP BAND ON THE SAME PLANE

Consider an infinite elastic solid with an elastic crack of length l
(=a-b) subject to both the normal stress O'and the shear stress T-at
infinity as shown in Fig. 3.1, Suppose that under action of T, slip
occurs on the plane y < 0in the region d<x <c¢ and dislocations pile up
against an obstacle at x=c, Let r(=c-d) be the length of the slip band
and t(:b—-c) be the distance between the piled-up end and the crack tip
nearer to the piled-up end. This System can be simulated approximately
by Superposing two distributions of infinitesimal dislocations (a) and (b)
which are shown in Fig. 3.1. Let f(x) and g(x) be the distribution func-
tions of (a) and (b) respectively. From the requirement for equilibrium
of each dislocation,these must satisfy the following equations:

(%)
—Afp oy A¥ + T =0 (3.1)

* 3G _
Af, 45+ o0 =0, (3.2)
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where D is the regions (d, c) and (b, a), The boundary conditions are
that f(x) is unbounded at X=a, b and c and bounded at x=d, and that g(x)
is unbounded at x=a and b.  With these and the following supplementary
conditions:

J:f(Z)oLx=0 (3.3)
J, gwdx=0, (3.4)

f(x) and g(x) can be obtained respectively as:

3‘(1)=:t—1j —(x=4) [x_ ath+c—d

TA | (x—aXx—bXx-¢) Z
+ L =N [@DKEB)-@—<) E(®) J
2 (KR + (b-ITT (F, &)

N (5.6)
= =l 2

TA [-Ocaxx-b)
where the positive and negative signs are for the region (b, a) and for
the region (d, ¢) respectively. T[( f, k) is the complete elliptic integral
of the third kind with the modulus k =/ (a-b).(c-d)/[(a-c) {b-d))and the
parameter f = -(a-b)/(a-c). Now, let n be the number of the piled-up
dislocations in the slip band, n is calculated as:

C
n =, $00dx = o [2L [ @-a)Ke)- (a0 o)
- (b~d) K(k)- (b TT (P £) ] (3.7)
v

(3.5)

(c-d) KB +b-0) T (F, &)
where ?' e —(c-d)/(b-d). If the crack does not exist, n reduces to ng,
which is obtained by (b - ¢) -0 in Eq. (4.7) as:
Mo = 5 (c-d), (3.8)

which is identical with the result for an isolated slip band derived by

Head and Louat! 2). The calculated values of the ratio n/no by Eqs. (3.
7) and (3.8) are shown in Fig. 3.2 as a function of » Y andt. From
Fig. 3.2, it is seen the number of piled-up dislocations increases due to
the presence of the near-by crack, rapidly increasing as the distance
between the leading dislocation and the crack tip decreases.

Next, we consider the effect of the interaction on the fracture strength
assuming that fracture is initiated by the crack, not by the slip band.
Since the stress concentration is larger at the tip x=b than at the tip x=a
due to interaction, crack propagation is initiated at the tip x=b. From
Egs. (3.5) and (3.6), Ti—t)’ and O'; on the y=0 plane are calculated for
c<x<b as:
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Gy=Af T dy+ T

-3
_ Z—d _ Gth+c-d | b-d. @-A)K®E)-(a~<)ElR)
= — T | oot [1 Zz ' Z (c—d)K(fa)+(b—c)Tr(f,ﬁ)] (3.9)
a atb
6y= A _9@0( 6=—-0-—"2Z__ (3.10
1=Af F2 4 Ty - )

Thus, Nz and Ng& , the stress intensity factors for sz and 6;’
at the tip x=b are:

b—d [ a-btc-d _ b-d (a-d)Kk)-(a~)EKF)
NT:T/(a—bXb—c)[ 2z z (C—d)K(fz)+(b—c)TT(l’,k)] (3.11)

Nr=%/a-—b . (3.12)

Assuming crack propagation occurs in the direction of the crack axis, the
condition for propagation is:

WA=V) 72, xg2

. (Ns+NZ) +2Y = 0. (3.13)
Now, consider the case of uni-axial tension as shown in Fig. 3.3, As
the angle between the tensile axis and the positive x direction /4 is
chosen since the applied shear stress component T on the y=0 plane
is greatest and therefore the interaction between the crack and the
slip band is most remarkable in this case. Let O"é be the applied uni-
axial stress required for crack propagation. Noting O= ’Z‘:(applied
uni-axial stress) x ¥+ we obtain 0, from Egs. (3.11), (3,12) and
(3,13) as:

r_[326% : b-d e
% =7 [+ s (@ bt -4}

_ (poa) (BRI K(R) = (a=0) E (k) }2] ’ (3.14)
(C=d)K{R)+ (b—)TT (P, k)

When the applied stress reachesdé, crack propagation is initiated.
Subsequent propagation is possible under the stress Gé, until the crack
tip arrives at the point x=c. But circumstances become somewhat
different thereafter. At present it is not possible to obtain an exact
value of the stress 0'5 required for propagation to continue. However,
both the upper and the lower limit of 65 can be found. 65 is considered
to be smaller than the stress required for propagation of a crack with
length (£ + t) and larger than the stress required for propagation of a
crack with length (£ + Y~ +t). That is,

f[__3&¥. - o [ 3G%
Ta-vXL+rtt) £ £ Ta-vXi+t) . (3.15)
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The fracture stress OJS is determined as the larger of O’é and 05,
If the slip band does not exist, O’S reduces to dT which is obtained
by t o0 in Eq. (3.14) as:

07*=J Wz-)g!i ) (3.16)

The calculated values of the ratio O"S/ GT by Eqs. (3.14), (3.15) and
(3.16) are shown in Fig. 3.4, In the region where @'5 > 0’2' , the
results are shown by a hatched area bounded by the upper and the lower
limit of 65. From Fig. 3.4 it is found that the fracture strength

decreases due to the interaction.

Next, let's compare the effect of interaction in the present case
with that in the case of two collinear elastic cracks. For this pur-
pose, we consider the interaction of two collinear elastic cracks in
the case when the uni-axial tensile stress is applied in the direction
making /4 with the x axis in Fig. 2.1 as in Fig. 3.3. The shear
stress component has equivalent effect to the normal stress component
on crack propagation as far as the energy criterion is concerned.
Therefore, the applied uni-axial stress required for propagation of the
first crack in this case is equal to J’_Z‘O'é, where O'é is that given by
Eq. (2.11). Similarly, the applied uni-axial stress required for pro-
pagation of the isolated first crack and that required for ro’pagation
of the joined crack in this case are given by V2 07 and/—ZPO"Z respec—

tively, where O and 55 are those given by Eqs. (2.12) and (2.13)

respectively. Therefore, the ratio of the fracture stress of a solid
with two collinear cracks to that of a solid with the first crack only in
the case when the tensile axis makes T(/4 with the crack axis is equal
to the corresponding ratio in the case when the tensile axis is normal
to the crack axis, i.e., the case treated in § 2, Thus, direct com-
parison of G5/} in Fig. 3.4 and 0,/ 0’ in Fig, 2.3 is justified.
The comparison is made in Fig. 3.5. From Fig. 3.5 it is found that
the effect of interaction is larger in the case of an elastic crack and

a slip band on the same plane than in the case of two collinear elastic
cracks except when the distance t is small.

§4. INTERACTION OF TWO COLLINEAR

DISLOCATION CRACKS

4.1 The case of the Bullough-Gilman type dislocation cracks
Case I The case in which crack expansion occurs at the inside tips

Consider an infinite elastic solid with two collinear dislocation cracks

of the Bullough-Gilman type 8)9) subject to anapplied stress 034 =0 at
infinity as shown in Fig. 4.1.
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.It is assumed in the bresent case that crack expansion occurs at the
inside tips only. These dislocation crachs are simulated by superpos-
Ing two distributions of infinitesimal dislocations, (a) and (b), which
are depicted in Fig. 4.117§ It is assumed that n, the number of slip
dislocations containeq in each crack in the distribution (a) does not
change during deformation. Let f(x) and g(x) be the distribution
functions of (a) and (b) respectively, From the requirement for
equilibrium of each dislocation, these must satisfy the following equa-
tions:

—ADJ;%o@:O (4.1)
Afo%di + 0 =0, (4.2)

where D is the regions (-b, -a) and (a, b). The boundary conditions
are that both f(x) ang g(x) are unbounded at x=ta and ¥b. From these
and the following Supplementary conditions:

=i ;
-L)c(x)dx =L7‘(1)dx -n (4.3)

~a. b
—j g0 dx :J g0 dx =0, (4.4)

Lk a

f(x) and g(x) are obtaineq as:
ARy (1) /

10 =t e s (@.5)

[
{ X Elh) b* }
= I
VB-eX-0t) K@) J(P—rXrta®
where the positive and negative signs are for the region (a, b) and
for the region (-b, -a) respectively, '"(a/b) and E'(a/b) are the
complete elliptic integrals of the first and the second kinds with the

modulus J1-(a/b » respectively,
Next, the Stresses Txy and O, on the y=0 plane are calculated for

-a<x<a from Egs. (4.5) and (4.6) as:

/
Gyz__CLnk b

o
#x)= tﬁ (4.6)

RU=1) K@B) {roXa— g (4.7)
6_ = 0~ 2 2 E l(a/b) J
J J(Fxa=xd { X+ b K'(ab) ). (:8)
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Therefore, Nz and N4, the stress intensity factors for Txy and O’S,
at the tips x=*a are:

__Grn b /
Ne = =903 [zatr==5 K'(afb) i:2)

__ob® { Et@h) g }

J2a(F-a2) | K'@h) — b2 |,
From Egs, (4.9) and (4.10), the rate of change in energy E of the
system accompanying expansion at the tips x=%a is:

5=~ T (N2 N 4 o

where C=b‘“a, f:C/b

(4.10)

AT/ / 4 Re— {E‘(f—t)_((_ﬂz}’
~F FH k0, M 8= Tl koo )
When t 50, Eq, (4,11) reduces to the corresponding equation for
an isolated dislocation crack of the Bullough-Gilman type derived by
Bulloughl7), Now, E has Stationary values at such values of ¢ that
fulfil the condition:

_A,4i£)§_51%+2530‘ (4.12)

Eq. (4.12) for ¢ has generally two real roots, The smaller one
corresponds to a minimum in E and,therefore,is the stable equilibrium
length. It is easily found that the stable equilibrium length is a mono-
tonously increasing function of o. Therefore, as o is increased
from zero continuously, each crack increases its length, taking always
a stable equilibrium length for a current value of 0",  When O exceeds
a certain critical value o5%B, Eq. (4.12) has no real roots for c.

crease in the applied stress if O >5/2}§.Therefore, 0’21'3 is the stress
required for unstable expansion of the cracks,
In order to find O/2B’ We proceed as follows. Eq. (4.12) is rewritten

o= ou] 2(E)- (’ci*)z] ’

where O]B:47/(n7\), c*=c/c,, co=Gn2x2 /[477_(1-)7)7] , A=
A'/B' and B*=1/B' . O17B is the stress required for unstable ex—

pansion of an isolated dislocation cracks of the Bullough-Gilman type,
which is equal to the fracture stress of a solid in the case of an isolated
crack!7), Co is the critical length of this isolated crack, i.e., the

as: /.
2

(4.13)
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length at the onset of unstable expansion17) Now, the right hand
side of Eq. (4.13) has a maximum at a certain value of c* for a given
value of b. When O exceeds this maximum, Eq. (4.13) has no real
roots for ¢. Therefore, UZB is found as the maximum of the right

hand side of Eq. (4.13), i.e.,

oo = oio [2(5) - (L)) =0m0(L).  waw

The calculated values of the ratio 28/6/1 B by Eq. (4.14) are

1

plotted against b/cq in Fig. 4.2,
seen: (i) the stress required for unstable expansion of two collinear
dislocation cracks of the Bullough-Gilman type is smaller than that
for an isolated dislocation crack of the same type, and decreases as the
distance between the outside tips of the cracks decreases. (ii) When
this distance is smaller than about 2.6 cq, the unstable expansion
occurs under no applied stress. In the case of elastic cracks”’ the
similar trend as (i) is seen, but the second trend is not found. The
second trend is due to energy of slip dislocations contained in the
cracks.

Now, when O reaches (5/2]'3 , two dislocation cracks join. Let
0’2% be the stress required for propagation of the joined crack, which
is given as:

From Fig. 4.2 the following are

/

" , z
6'28 Tr(/ v)b ,B(Co)_ (4.15)

Then, 628, the fracture stress of the bulk solid is obtained as the
larger of gp and G025 from Eqs. (4. 14) and (4.15) as:
!

Ols (—50—)—_2— Gl

G2 = b (4.16)
o P(E) f Z L7,

The calculated values of the ratio O’B/ oF B by Eq. (4.16) are plotted
against b/cO in Fig.4.2. From Fig.4.2 it is seen that the effect of
interaction on the fracture strength in this case is different from that
in the case of two collinear elastic cracks in that the fracture strength
increases due to the interaction in the former case when the distance
between two cracks is small, whereas the fracture strength of a solid
with two collinear elastic cracks never exceeds the fracture strength of
a solid with an isolated elastic crack.

Case II The case in which crack expansion occurs at the outside tips

We consider two collinear dislocation cracks of the Bullough-Gilman
type which are the same as shown in Fig, 4.1. In the present case,
however, it is supposed that crack expansion is prevented at the inside
tips by obstacles and it occurs at the outside tips. Calculating the
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stress intensity factors at the tips x=%b, the rate of change in energy
accompanying expansion can be obtained in the similar way as in the
case I as: N
dE e _Ml Gr’nf/\l _N' V(I_V)O-C _'_27
ac 4T(0-V)C 14 : (4.17)
7 %

c T (45 (1tsy E'l,
where §=— =— and N = /-

x)M=7 I+3 FCs) 7 S(+3) K75

Let UZE be the stress required for unstable expansion, which, in the
present case, is regarded as the fracture stress of the bulk solid.
0/2%3 is obtained as:

/
v
C)IZB ‘O/IB[Z(C*) ( )]mar ’ (4.18)

where M¥= /M'/N’ , N¥=1/N', The calculated values of the ratio
628/618B by Eq. (4.18) are plotted against a/cq in Fig. 4.3. From
Fig.4.3 it is seen that the fracture stress of a solid with two collinear
dislocation cracks of the Bullough-Gilman type is greater than the
fracture stress of a solid with an isolated dislocation crack of the same
type and increases as the distance between the inside tips decreases,
when expansion at the inside tips is prevented. The contrary trend is
seen in the case of elastic cracks if expansion at the inside tips is pre-
vented. Moreover, effect of interaction on the fracture stress is far
more remarkable in the case of dislocation cracks of the Bullough-Gilman
type than in the case of elastic cracks. In fact, when the distance
between the inside tips approaches to zero, the fracture stress becomes
infinitely large in the former case whereas the fracture stress decreases
only by a factor of /2 compared with the fracture stress of a solid with
an isolated crack in the latter case. This is due to slip dislocations
contained in the dislocation cracks.

4.2 The case of the Cottrell type dislocation cracks
Case I The case in which crack expansion occurs at the inside tips

Consider an infinite elastic solid with two collinear dislocation cracks
of the Cottrell type subject to an applied stress Oy= O at infinity as
shown in Fig. 4.4.

These cracks are simulated by superposing two distributions of in—
finitesimal dislocations, (a) and (b), which are depicted in Fig. 4.4 ).
It is assumed that n the number of dislocations of each crack in the
distribution (a) is constant during deformation. By the similar treat-
ment as in § 4.1, it is found that the distribution functions of (a) and
(b) are given by f(x) in Eq. (4.5) and g(x) in Eq. (4.6), respectively.
Let Ng¢ and Ng be the stress intensity factors at the tips x=%a due to
the distributions (a) and (b) respectively. Ny may be calculated from
Eq. (4.5) as:
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Ny = T b 1 (4.19)
T 209 [2a(pP=ad) K'(e/b) . '

No has been already given by Eq. (4.10). Thus, the rate of change in
energy accompanying expansion at the tips x=%a can be obtained as:
AE

dc =~ T2 (Ng+No)+ 27

= A _&nmA _ % mi-Vo’c Sy TA0” + 2y, (4.20)
() c 4¢ 2 27,

where A", B' and ¢ are the same as defined in § 4.1, Eq. (4.20) recuces

to the corresponding equation for an isolated crack of the Cottrell type

derived by Bullough17). Let 0'2'0 be the stress required for unstable

eXpansion., By the quite similar treatment as in § 4,1 ; 62(') is obtained

as:

%é:o‘,c.z[ %?—’CL:]EOTCV(%) (4.21)
max £

Where o, c*, A% apng B are the same as defined in § 4.1 ang 070=2 A0

_OJTC is the stress required for unstable expansion of an isolated
dislocation crack of the Cottrell type, which is equal to the fracture

Stress of a bulk solid in the case of an isolated crack17). The calculated
values of 075} /0’1 by Eq. (4.21) are plotted against b/c, in Fig. 4,2,
From Fig, 4.2 it is found that the effect of interaction of two collinear
cracks on the stress Trequired for unstable expansion in the case of the
Cottrell type cracks is similar to that in the case of the Bullough-Gilman
type cracks of the case I,

62, the fracture stress of the bulk solid is given by the similar
reasoning as in § 4.1 as:

20 (-£)

b . _b
6"‘:11[[((0) ’f Ca 25-2.
The calculateq values of the ratio 62(3/0"1(3 are plotted in Fig, 4,2,
From Fig. 4.2 it is found that the general trend of the effect of interac-

tion of two collinear dislocation cracks on the fracture stress in the
case of the Cottrell type cracks is similar to that in the case of the
Bullough-Gilman type cracks. However the degree of effect is consider—
ably greater in the former case than in the latter case, when the distance
between two cracks is so small that the propagation stress of the joined
crack determines the fracture stress., This is due to that the propagation
Stress of an isolated dislocation crack of the Cottrell type is smaller
than that of the Bullough-Gilman type crack by a factor of 2.

L b
2 1'7( —C.—£52

5. = (4.22)
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Case II The case in which crack expansion occurs at the outside tips

In the present case, we consider two collinear dislocation cracks of
the Cottrell type as shown in Fig. 4.5. Calculating the stress intensity
factors at the tips x=%b, the rate of change in energy accompanying crack
expansion is calculated in the similar way as in the Case I as;

AE _ o @R N0 —— Mg
ac 4T(v)C N iq VMN' =5~ +27, (4.23)

where M' and N' are the same as defined in § 4,1, The stress required
for unstable expansion, ()’22;, which is regarded as the fracture stress
of the bulk solid in this case is obtained as:

o= o2 [ZF-M

The calculated values of 01298/ G'] c by Eq. (4.24) are plotted against a/cO
in Fig. 4.3. The general trend of the variation of O—2§/G'1C with a/co

Is similar to that of 05/ Ojpin § 4.1,

(4.24)

§5. INTERACTION BETWEEN AN ELASTIC CRACK AND
A DISLOCATION CRACK ON THE SAME PLANE

Consider an infinite elastic solid with a dislocation crack of the
Cottrell type and an elastic crack on the same plane subject to an applied
stress Oy = 0 at infinity as shown in Fig. 5.1. Let .e(:a—b) be the
length of the elastic crack, r(=c-d) be that of the dislocation crack, and
t(:b—c) be the distance between the inside tips. Here, r and t depend
on the applied stress, whereas s=r + t is constant. This system can
be simulated by superposing two distributions (a) and (b) of infinitesimal
dislocations as shown in Fig. 5.1. It is assumed that n, the number of
dislocations of the Cottrell type crack in the distribution (b) is constant
during deformation. Let f(x) be the distribution function of the superposed
distribution,(a) + (b). From the requirement for equilibrium of each dis—
location, f(x) must satisfy the following equation:

A[}J%dgqho’:o, (5.1)

where D is the regions (d, ¢) and (b, a). The boundary conditions
are that f(x) is unbounded at x=a,b,c and d. With these and the following
supplementary conditions:

a
Jb FQdx = ¢ (5.2)

C
_fd fOdx =n (5.3)
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Eq.(5.1) can be solved as:

f)=

= 6 [y atbtctd o, adtbe
J~0Fa)a-pX X—YX=d) [ TA { X Z F2

o) K@), 2 [ETd), KR ITLR) ]
> K(®) Z (bOK® TR R)-K & r(s' )

where the negative and positive signs are for the region (b, a) and

for the region(d, c)respectively. k, § and P' are the same as in § 3.
Since the stress concentration is considered greater at the tip x=b
than at the tip x=a, propagation of the elastic crack will be initiated at
the tip x=b. The stress Oy on the y=0 plane is calculated from Eq.

(5.4) for c <x< b as:
6= b (o[- 2 ¢ adthe , (ab-d) KR-E@ |
Y T b)Xo-KA—d) & z 2 7 P

A Jaood) T2 (-QKE)-(b-IT(F,k) ] (5.5)
FATTTR 2 R® 1) +(R A—K® ).

From Eq.(5.5) N(b) ana N(e), the stress intensity factors at the tips
x=b and x=c, are;

o A o\ K®)-E®)
NG =7 {@a=bXb—0 [(“""’ (a—<) K(&) ]

(5.6)
< T2 1T(F &) — K (&)
AN @ Xe0 K® TR T B - KB
_ 6 [a-=c (o) KB —E®

b=d . /2 . Tr(f;'k)
T A D K® TR+ (R KB -
Now, the stable equilibrium length of the dislocation crack for a

given value of O is found by solving the equation, ~(Ma -v)/cIN2(c)
+ 2% = 0, thatis,

S . 2
B [ o) R

T | K® TR+ R)—KE)

re
-1 [yr _tyf . t
oV JEDEE) T v K®)-E(k
+2(5;) (% ft_rJ_[Tc'(%*%) K(®) )J

/2 T (Fr k) =
K(R)  TT(RR)+TI(fR)—K(8) ’

—(;—T[zl( r)_%+%[ﬂ/2 (k) f]

X (5.8)
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with respect to r. Here t=s-r, 0/1 C=2"6/(n>\) and rchn27\2/ (2m—wHY) .
O1c 1is the stress required for unstable expansion of an isolated
dislocation crack of the Cottrell type and r, is the critical length of it. )

Provided that the dislocation crack initiates unstable expansion before the
elastic crack does, o’é, the stress required for unstable expansion of the

dislocation crack in the present case is obtained from the conditiop that
Eq.(5.8) for r has no real roots for the values of 0’ larger than G¢. On

the other hand, the condition for propagation of the elastic crack is given
as.:

2 I%F‘L)Nz(bH 2%=0,

that is,
f£+£ KB)-E® 1
j% [ﬂ%‘(%*%) Ka% ]

_ ¢+
e a8y Tt (T TR -K(R) |2
( ‘°) [4(72) % {K(k) Tr(f;k)+n(?;ﬁ)‘K(ﬁ)} }

Lo EE+L) [ 2 (4, t)KE)-E®
iz r)ér rL[TL_(f+f)_h_( J

a K (&)
w2 TRR-KE)  _ g
K(®) TI(f,R)+T(FE)—KE)  * (5.9)

Provided that the elastic crack initiates unstable expansion before the
dislocation crack does, O p» the stress required for propagation of

the elastic crack is obtained by solving the simultaneous equations of
Eqs.(5.8) and (5.9) with respect to r and 0. Let ré be the critical
length of the dislocation crack in the present case and OJE': be dE for

r:r(':. Then, (i) if (5(': < dé , crack propagation is initiated by the
dislocation crack, (ii) if O/(':7 Q‘]';J , it is initiated by the elastic crack, and
(iii) if o’é =o’}'3 , it is initiated by both the cracks at the same time. It is
to be nqticed that the stress required for crack propagation in the case

when O, > O/}'; is not given by O’t but by the root of the simultaneous
equations of Egs(5.8) and (5.9), which is necessarily smaller than O/E'
Now, we consider the case when each crack has the same propaga-
tion stress when isolated. By treating such a case, it will be clarified
which of the dislocation crack and the elastic crack suffers larger
effect of interaction. Since the propagation stress of the dislocation
crack of the Cottrell type is 2% /n A (=[2G¥ /[ -V )r.] )and that

of the elastic crack is fSG"K /[T -Y)R] when each crack is
isolated, the above mentioned condition yields the relation £ =4r,.
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Substituting this relation into Eqs.(5.8) and (5.9), O’é and O’E': were
calculated as a function of s, The results showed that Gé is smaller

than 6]'3 independent of values of s. This implies that propagation is

initiated by the dislocation crack in this case and that the dislocation crack
suffers larger effect of interaction than the elastic crack. The calculated

values of O are plotted in Fig.5.2 in terms of the ratio dé/61c‘ It is

Seen that O'é decreases as s decreases and that the dislocation crack
propagates under no applied stress if s £0.5 Trc.

Now, when the applied stress O reaches 5};, two cracks join. The
joined crack is a dislocation crack of the Cottrell type with length 2+
s (=4rC + s) in the present case. In Fig.5.3 the relation between E,
energy of a solid with an isolated dislocation crack of the Cottrell
type and its length r is illustrated schematically. For ¢ = O1¢cs E

has a stationary value at r=ro. For 0'=0/, E has a maximum at r=
Ty and a minimum at r=rp, since 0o < G1.. Now, if the length of the

Joined crack,f + s is larger than r,, the joined crack continues to
Propagate under O held at O¢, since E decreases as propagation pro-
ceeds. However if £+ s is smaller than Ty, propagation does not
ocecur without further increase in 0°.  Thus when the length of the
Jjoined crack,f + s is smaller than r,, 0”should be increased to the
value O'g for which E has a maximum at r= f{ + S, so that propagation
may become possible. That is, for 0 = J¢, E decreases as propagation
proceeds. Notice that Z + S cannot be smaller than rp, because rp <
rcand f+ s >4rc. dg is obtained by t—o0andr- ¢ + s in Eq. (5.8)

as:
" /%_"'s —
Oc = Ofe Z;RS/

Since Eq.(5.10) holds gotﬁ when £+ s >r, as well as when £+ s<z,,
it follows that 0'92‘*, the fracture stress of the bulk solid is always
determined by the larger of 6('3 and 53 whether £+ s is smaller than
Ta Or not. The calculated values of 0'%* by Eqs.(5.8) and (5 .10) are
shown in Fig.5.2 in terms of the ratio 6‘5*/ O1c. Itis seen that the

general trend of the effect of interaction on the fracture stress in the
present case is similar as in the case of two collinear elastic cracks.,

(5.10)

§6. CONCLUSIONS

The effect of interaction between elastic cracks, dislocation
cracks and slip bands on the fracture strength of a solid was studied
for various cases. Comparing the results for each case, the following
conclusions were obtained:
(1) In the case of two collinear asymmetrical elastic cracks, crack
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propagation is initiated by the larger crack,

(2) The effect of interaction of two collinear asymmetrical elastic
cracks on the fracture strength of a solid is considerably dependent
upon the length of the second crack when the distance between the
inside tips is small.

(3) The interaction of two collinear asymmetrical elastic cracks may
be neglected when the distance between the inside tips exceeds the
second crack length, in the sense that the change in the fracture
strength due to interaction is at most 5%.

(4) The critical distance between inside tips of two collinear asym-
metrical elastic cracks with which two cracks can be regarded as one
joined crack as far as the fracture strength is concerned, is about 10%
of the length of the first crack nearly independent of the length of the
second crack.

(5) The effect of interaction between an elastic crack and a slip band
on the same plane upon the fracture strength of a solid is greater
than that of two collinear elastic cracks except when the distance
between the crack and the slip band is small, if the length of the slip
band is equal to that of the second crack and if the distance between
the piled-up end and the crack tip nearer to the piled-up end is equal
to the distance between the inside tips of two cracks.

(6) The number of piled-up dislocations increases due to interaction
between the slip band and an elastic crack on the same plane.

(7) The effect of interaction of two collinear dislocation cracks on the
fracture strength of a solid in the case of the Bullough-Gilman type
cracks is similar to that in the case of the Cottrell type cracks except
when the distance between two cracks is small,

(8) In the case in which crack expansion occurs at the inside tips the
effect of interaction of two collinear dislocation cracks (both in the
case of the Bullough-Gilman type cracks and in the case of the Cottrell
type cracks) on the fracture strength of a solid is different from that
of two collinear elastic cracks in that the fracture strength increases

an isolated elastic crack.

(9) In the case in which crack expansion occurs at the inside tips, two
collinear dislocation cracks (both in the case of the Bullough-Gilman
type cracks and in the case of the Cottrell type cracks) join under no
applied stress when the distance between two cracks is small, The
Similar phenomenon exists in the case of an elastic crack and a dis—
location crack of the Cottrell type on the same plane.

(10) In the case in which crack expansion occurs at the outside tips,
the fracture strength of a solid with two collinear dislocation cracks
(both in the case of the Bullough-Gilman type cracks and in the case of
the Cottrell type cracks) becomes greater than the fracture strength
of a solid with an isolated dislocation crack due to the interaction.
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(11) The effect of interaction between an elastic crack and a dislocation
crack of the Cottrell type on the same plane upon the fracture strength

is similar to that of two collinear elastic cracks.

(12) In the case of an elastic crack and a dislocation crack of the Cottrell
type on the same plane, crack propagation is initiated by the latter, if
each crack has the same propagation stress when isolated.
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Fig.2.1l. Schematic illustra-
tion of two collinear
asymmetrical elastic
cracks.
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Fig.2.2. The ratio of N(c), the
stress intensity factor at
the inside tip of the
second crack to N(b), that
of the first crack. ) and
r are the length of the
first crack and that of the
second crack respectively,
and t is the distance
between the inside tips.
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3. The dependence of the
ratio of the fracture
stress§, of a solid with
two collinear cracks to
the fracture stress @
of a solid with the first
crack only, 55,/ (3;, upon
the length of the %irst
crack .#,, that of the
second crack r, and the
distance between the
inside tips t.
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.4. The critical distance

between the inside tips
with which the change in
the fracture strength due
to interaction is at most
5%. 0 expresses the criti-
cal distance.
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b) S S =Y

Fig.3.1. A slip band and an elastic crack on the Same plane,

and the distributions of infinitesimal dislocations
Simulating those,

Fig.3.2. The effect of a crack on the
number of piled-up dislocations.
n and ny are the number of piled-
up dislocations in the case with
a crack, and that in the case
without a crack respectively,
£ and r are the length of the crack
and that of the slip band, and
t is the distance between the
piled-up end and the crack tip
nearer to the piled-up end.

ar
P78

7 Fig.3.3. The case of uni-axial tension.
The tensile axis makes T/4 with
the y=0 plane.

186

Interaction between Elastic Cracks,

Fig.3.4. The effect of a slip

band on the fracture stress
of a solid with a crack.O’S
is the fracture stress in
the case with a slip band
and GT is that in the case
without a slip band. f and r
are the length of the crack
and that of the slip band
respectively, and t is the
distance between the piled-
up end and the crack tip
nearer to the piled-up end.
In the region where t/¢ is
small, the results are shown
by the hatched area bounded
by the upper and the lgwer*
limits of the ratio 03/ 01.

Dislocation Cracks and Slip Bands
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two elastic
Cracks (r/g =)
o

an elastic crack
and a slip band (rig=1)
| |

06

Fig.3.5. Comparison of the
interaction between an
elastic crack and a slip
band on the same plane
with the interaction of
two collinear elastic
cracks., 02 is the frac-
ture strength of a solid
with a crack (length £)
and a slip band (length
r) with a distance t.

05 is the fracture
strength of a solid with
two collinear elastic
cracks (length £ and r)
waﬁh a distance t.
0,(=07) is the fracture
s%renéth of a solid with
an isolated crack (length
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Fig.4.2. The effect of interaction

of two collinear dislocation
cracks on the stress required
for unstable crack expansion
and on the fracture stress of
a solid in the case when crack
expansion occurs at the inside
tips. O'lB and O'lc are the
fracture stresses of a solid
with an isolated dislocation
crack of the Bullough-Gilman
typ€ and that for the Cottrell
type one respectively. Cyp
is the stress required for un-
stable expansion of two colli-
near dislocation cracks of the
Bullough-Gilman type, and Op(
is that for the Cottrell type
a solid with two collinear
Gilman type, and O, is that
half of the distance between
tical length, that is, the
ansion, of an isolated disloca-
ype.
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Fig.4.3. The effect

of interaction 20 -
of two collinear i

dislocation 18

cracks on the .

fracture stress '%f 16

in the case i -

when crack ex- & aic r

pansion occurs Gic o

at the outside B

tips. O1p and

Ojc are the

fracture stresses o . ) L L E !
of a solid with o

an isolated dis-
location crack

of the Bullough-
Gilman type and

that for the Cottrell type one, respectively. Gég is the frac-
ture stress of a solid with two collinear dislocation cracks

of the Bullough-Gilman type, and (TZE is that for the Cottrell
type ones. a is a half of the distance between the inside tips
and c, is the critical length of an isolated dislocation crack
of the Bullough-Gilman type.

@) dLz+e <+EFH
Fig.4.5. Two collinear dislo-
cation cracks of the
b <33 *F3p Cottrell type.

Fig.4.4. Two collinear disloca-
tion cracks of the Cottrell
type and the distributions
of infinitesimal disloca-
tions simulating the cracks.
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Fig.5.1. A dislocation crack of the Cottrell type and
an elastic crack on the same plane.
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Fig.5.2. Effect of interaction on the Fig.5.3. Schematic illust-
Stress required for crack propa- ration of the rela-
gation and on the fracture stress, tion between E, ener-
O1¢ is the Propagation stress of gy of a solid with an
an isolated dislocation crack of isolated dislocation
the Cottrell type, which is equal crack of the Cottrell
to that of an isolated elastic type and its length r,
crack in this case. O’(': is the When the joined crack
Stress required for unstable has such length larger
éxpansion of the dislocation crack, than ry as r_, it pro-
0, "is the fracture stress of the pagates under G/,
bulk solid. s is the distance When the joined crack
between the outside tip of the has such length ra
dislocation crack and the inside smaller than r,, it
tip of the elastic crack. r. is cannot propagate un-
the critical length of an isolated til O is increased to
dislocation crack of the Cottrell al.
type.
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