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ABSTRACT

A review is made of the work pertaining to the Griffith criterion that
has been published in the last decade. It is concluded that the Griffith
criterion still retains the dominant position in explaining fracture, but
it is not quantitatively complete. Numerous second-order corrections
must be added to the theory, and a number of experiments are required
to resolve conflicting evidence on the nature of the cracks.

Introduction

The purpose of this chapter is to correlate the experimental evidence
related to the Griffith criterion. Excellent surveys of the early literature
on this topic can be found in the review articles by Orowan ' and by
Jones.? In the decade that has passed since these reviews, enough new
experiments have accumulated to warrant a reassessment of the situation.

The concepts behind the Griffith criterion and the resulting equations
are well known and have been enumerated elsewhere in these proceed-
ings. Poncelet ? has objected to the Griffith hypothesis on the grounds
that the initiation of a crack is an atomistic process and not treatable
by the macroscopic equations of thermodynamics. However, Orowan !
has derived Griffith’s equation for critical stress (except for a minor
numerical factor) using a strictly atomistic approach. Furthermore,
Orowan * has demonstrated that when the stress reaches the value pre-
dicted by the Griffith formula, the material must break. This establishes
the necessary condition which, in addition to Griffith’s sufficient condition,
places the Griflith criterion in a strong theoretical position.

The following discussion will be restricted to five topics: propagation
velocity of cracks, time effects in static fatigue, size effect in small fibers
and small indenters on plates, dispersion effect in strength, and experi-

mental evidence for submicroscopic flaws.
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Crack Propagation

When a crack propagates through a brittle isotropic material, part
of the potential energy (excess elastic energy) is used to create a fresh sur-
face, and part is required for the kinetic energy associated with the dis-
placements around the tip of the crack.

Consider the case of plane strain. The kinetic energy (KE) resulting
from a crack of length 2¢ propagating at each end with velocity ¢, is

. dax\? dy\?
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where the integral is over the region that is elastically disturbed. The
integrals can he reduced to a dimensionless form using the similarity
transformations

x=oqac, y=0c, and r= Rc= Vy? + y? (2)
The derivatives in Eq. 1 depend on the strain (0/E), so that the kinetic
energy expression is of the form

9

KE = §pe2? -Z;.—_, k (3)

where £ is a dimensionless number which can be determined provided
that the stress field around the crack is known.

The essential assumption made is that the region of strain owing to
a crack is limited to a zone centered on the tip of the crack. The mathe-
matical problem is now focused on the parameter k, which, because of
Eq. 2, can be expressed as an integral in the r — 6 plane, hounded by the

radiug R:
2 27 R .
T — 7 0) dr d 4
k (1«-1»)2/0 /Oﬁ(v,r, ) dr (4)

where v is Poisson’s ratio. Thus # is determined if R is known since #
is defined by the stress field around the crack (knowledge of the stress
field implies some assumptions on the geometry of the crack).

It is logical that the zone of integration should be limited, since dis-
placements cannot he communicated faster than the sound velocity.
Mott * showed that, for plane strain, the displacements should be bound
by the longitudinal wave front, so that R = ¢,./u;, where é, is the maxi-
mum crack velocity and ; is the sound velocity.

The value of £ can be found in terms of R by the requirement that
the total energy of the system (elastic, surface, and kinetic) is minimized
as the crack progresses. The elastic energy in a plate around a crack
of length 2¢ that is available to drive the crack is mo%*/E, the surface
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energy is 47yec, and the kinetic energy is given by Eq. 3. The energy
condition during crack propagation is

£
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The energy condition that determines the critical crack size ¢ is
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Equations 5 and 6 yield
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but, since ¢ — ¢,, when ¢>> ¢, and v = ‘\/E/;, we have
k=2r <~> = 27R? (8)

There are two equations for : Equation 4 arises from the general
expression for the kinetic encrgy in a zone around the crack, and Eq. 8
arises from the minimization of elastic, surface, and kinetic energy. There
is only one value of £ that satisfies both equations; it is found by solving
the following integral equation:

27 2w /\‘ZE; .
k=20 F(v,r, 8) dr 40
(1 - ”)”,/0 0

I’ corresponds to the quantity in the brackets of Eq. 1, when expressed
in terms of the stress field around a crack and in polar co-ordinates.

Roberts and Wells ¢ showed that, by taking the solution of the stress
field around a VVestergaag_gl " crack for F and assuming v = (.25, the
above equation yields \/ZM = 0.38. The solution vields a slightly
higher value of V’Em/ k for a higher value of ». The value Vr/k = 0.38
is in reasonable agreement with Schardin’s and Struth’s * measurements
on vitreous silica; they found the maximum crack velocity to be about
0.40 of v;. (See also Table 2 of Chapter 16 of this volume.)

It must be pointed out that better agreement between theory and ex-
periment cannot be expected because of the assumptions in the theory.

* The equation of motion of the crack is found by differentiating Eq. 7 with respect
to time.
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In the first place, the theory assumes a constant stress field. However,
as the crack moves through the glass, the stress may increase because the
load is held by a smaller area, or it may decrease because some kinetic
energy is imparted to the apparatus in contact with the specimen. Second,
the theory assumes a condition of plane strain which results in ¢, being
proportional to the longitudinal wave velocity. In a three-dimensional
case, however, shear waves and Rayleigh surface waves, in addition to the
longitudinal waves, may limit the conversion of potential energy to
kinetic energy. Third, the value of £ derived above depends upon the
assumption that v = 0.25. According to Eq. 4, V21 /k varies approxi-
mately 5%, about the value 0.38 as v varies 409, about the value 0.25.
Fourth, the value of £ depends upon the geometry of the crack; in the
case above, the stress field around a Westergaard crack is used; however,
k may vary if the crack is changed to a different shape. Finally, Eq. 5
implies no dissipative processes, such as energy for deformation, during
the fracture process. The conversion of energy to plastic flow in glass is
small but cannot be completely ignored, since it is a matter of common
observation that glass flows under small pyramid indenters in hardness
tests. In view of the limitations of the theory, it is unreasonable to
expect the relation ¢,/v; = constant to hold from glass to glass better
than, say, to a few percent. Considerably more work must be done
before the second-order effects described above can be explained; never-
theless, the experimental results clearly show that kinetic energy is the
major reason why the crack velocity is a given fraction of the sound
velocity.
Equation 7 can be written in terms of the stress at the crack tip o,

i = Vor/ku(l — (0./0)?)% )

which is plotted in Fig. 1. This result, labeled Mott, is compared with
the published result of Poncelet,® who based his theory of crack propa-
gation on radically different premises. Mott’s result, which is based
on the critical-law concept of Griffith, shows that the crack suddenly
spreads catastrophically when the stress on a pre-existing flaw reaches
o. but that the crack velocity is limited to about 0.38 of the longitudinal
wave velocity. Poncelet’s idea, the forerunner of several theories "'
hased on the flaw-genesis hypothesis, is that there is no flaw until it is
created by the stress (at about 0.7 of ¢,), whereupon it spreads cata-
strophically, the crack velocity being limited to about 0.5 of the transverse
wave velocity.

The thermodynamic premises upon which the critical-law and the
flaw-genesis hypotheses are based are divergent. [t is difficult, how-
ever, to choose between them on strictly experimental evidence, since
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they both predict virtually the same results. The maximum crack
velocity is 0.5z, by one theory and about 0.382; by the other, values that
are reasonably close in view of the assumptions of the theory. The time
to attain the maximum crack velocity when the stress is slightly above
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Fig. 1. Maximum crack velocity versus stress comparing the
theory of Poncelet, based upon the flaw-genesis hypothesis,
to that of Mott, based upon the pre-existing flaw hypothesis.

@, is very small in either theory, although, according to Mott’s theory,
the critical crack grows at a slightly smaller rate than the spread of a
crack in Poncelet’s theory. Integrating Eq. 7, the expression between
crack depth and time is

(= [Tl e tanh VT = o (10)
By Eq. 7, ¢ = 0.99¢s when ¢ =~ 100c, and, consequently, the time to
obtain 999 of ém is of the order of magnitude of 1/éx for a 1y deep crack.
This rapid rate of growth makes it very difficult to distinguish experi-
mentally between the two hypotheses on the basis of growth dynamics.

Mott’s theory is applicable for high values of the fracture velocity
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where the kinetic energy is appreciable, However, cracks sometimes
move at very slow rates.!®* Roesler !4 pointed out that when the load is
distributed on the same (or larger) area as the crack develops, a condi-
tion of quasi-equilibrium between surface and mechanical energy can
be maintained over long periods. Furthermore, Orowan has shown that
a crack will sometimes propagate under smaller stresses than required to
initiate the propagation.’® In this case, ¢ is the depth of the observed
fracture and is controlled by v and ¢ according to Eq. 6. A slowly
spreading crack is consistent with a slow change in surface energy. This
idea, first proposed by Orowan,'* has heen experimentally confirmed
by Levengood,” who demonstrated that the diffusion of gases (in the
glass) to the crack determines the rate of slow propagation.

Consequently, there appears to be no experimental work on fracture
Propagation that is inconsistent with the Griffith hvpothesis of pre-existing
faws.

Static Fatigue

The expression “static fatigue™ has been coined for that phenomenon
particular to inorganic glass where the average breaking strength under
constant load depends upon the time. Unlike metals, the effect of cyclic
loading differs very little from that of static loading when compared to
the same time interval.1s

In terms of the pre-existing flaw hypothesis, this phenomenon is similar
to that of slow fracture growth. In this case, the size of ¢o, which deter-
mines the stress at which the fracture appears to occur spontaneously,
depends upon time. The magnitude of ¢y depends upon stress and at-
mosphere, with the result that a lower stress causes fracture after a longer
time interval. The stress-time equation, accordingly, results from the
gradual penetration into the crack of substances that are adsorbed at
the crack walls. There is a stress below which the glass appears to with-
stand fracture indefinitely. This is about one-third the breaking stress
at rapid rate of loading. Orowan ' showed that this factor of one third
was about equal to the square root of the ratio of the surface energy y
in moist atmosphere to Y of a fresh surface in vacuum. Consequently,
Orowan was led to conclude that the gradual change in vy was responsible
for static fatigue.

Orowan predicted that there should be no static fatigue effect for
specimens baked out and tested in vacuum. This was confirmed by the
experiments of Gurney and Pearson,' who showed that the strength of
rods tested below 10~% mm Hg is about the same at 106 sec as at 1 sec.
Further confirmation was made by the experiments of Kropschot and
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Mikesell,® who found that the static fatigue effect had virtually disap-
peared at very low temperatures (about 76°K). Gurney and Pearson
also varied the temperature in vacuum and were able to show that the
fatigue effect could not be ascribed entirely to gaseous attack on the
crack. They felt that some of the delayed fracture is due to the atmos-
pheric constituents contained in the surface layers of the crack. That
is to say, the material under intense stress at the tip of the crack is a
reaction product and weaker than the pristine glass.

Elliott * has proposed that the actual depth of the crack may be deep-
ened by the diffusion of corrosive agents to the root of the crack. For an
assumption that the growth of corrosion products is the same as that
for oxide films, the crack depth is related to time by

co=dAlogt+ B
Substituting this into Eq. 6, we find
g.7% = Ay log t + B, (11)

This is one of the forms of the fatigue equation. This equation fits con-
siderable experimental data.2!

The loss of strength with time may be due to the growth of the crack
size or the decrease of surface energy of a constant-sized crack or both,
but in any event the Griffith hypothesis of pre-existing flaws seems ade-
quate to explain the phenomenon of static fatigue.

Charles 22 hag recently extended the above concepts to explain the
increase of strength with rate of loading, which is additional evidence in
support of the Griffith theory.

The Size Effect

A notorious feature of glass is its tendency to hecome stronger as the
area under stress is decreased. * The size effect in strength is particularly
evident for glass fibers with small diameters (5 ), which attain strengths
about fifty times that commonly found in bulk glass. A number of
theories to explain the size effect have been fashionable, but recent ex-
periments have discredited most of them.  One such theory was the
hypothesis of oriented structure.? However, a number of experiments
have shown that the physical properties of strong fibers are isotropic.
Otto and Preston * showed that the compaction and expansion of strong
fibers is isotropic; Mould % found that the Poisson ratio of strong fibers
was equal to that of bulk glass; Preston 2 has pointed out that no one has
observed birefringence in fibers below about 50 u; and Orowan ¥ has

* "T'his feature is not exclusive to glass.  The size effect is also observed in metal
whiskers and thin films.
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pointed out that fracture morphology of glass fibers is unlike that of
filaments with oriented structures (such as nylon). This evidence leads
to the rejection of the oriented-structure hypothesis.

The most popular hypothesis of one decacde ago was that of oriented
flaws.?® It was thought that the drawing process in fibers would arrange
flaws longitudinally, parallel to the axis, and the longitudinal strength
would therefore increase. However, Otto and Preston ! found that the
strength of strong fibers is just as high at 45° to the axis as at 90° to the
axis. Furthermore, this hypothesis could not explain the high strength*
(225,000 psi) found by Witucki ? when 3-mm rods were acid-polished.
The evidence is sutficient to reject the oriented-flaw hypothesis.

It has been suggested that the high strength of fibers is due to strains
that arise from the cooling conditions during the fiber formation. Such
strains have been observed by Stirling ® for small rods (1 mm) cooled
under tension, but they have not been observed in small strong fibers.*
Furthermore, it can be shown that the thermal gradient in small fibers
during the cooling process is so small, as is quenching time of the surface,
that the assumption of “frozen-in” strains is difficult to justify analyti-
cally.®

Another hypothesis is that of surface strength, which supposes at-
tractive forces in the surface layer to be different from the bulk attrac-
tive forces. This concept of surface strength was originally postulated by
Preston 32 and has been revived by Tooley and his colleagues.® The
physical meaning of this concept is obscure. Otto * has shown that the
strength of fibers can be made independent of diameter by controlling
the forming conditions. Furthermore, Bartenev * has shown that, if a
thin layer of a fiber is etched off, the strength goes up, and Thomas 3
has shown that, with time (allowing the surface to thicken), the strength
drops. These experiments all show that the variation in strength is due
to a variation in surface defects and not due to a variation in the intrinsic
strength. Flaw size naturally is limited by the fiber size, but this restric-
tion cannot account for the large size effect that is sometimes observed.

A popular explanation of the size effect using flaw theory relies on
the weakest-link argument. It is based upon the assumption that there
exists an a priori probability of finding a flaw of a given severity, such
flaws being distributed randomly in size and space. A number of theories
have arisen, all based on somewhat different distribution functions, but
they have been shown by Charles and Fisher # to be essentially equiva-
lent. They all predict that larger samples will be weaker. This idea
has been qualitatively confirmed, but quantitatively there are some
discrepancies, which will now be described.

* By strength is meant the apparent stress that is required to fracture the material,
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It is a necessary consequence of statistical theories of fracture that the
dispersion must increase as the median increases. Charles’ 22 recent work
has confirmed this for moderate average breaking loads, as Table 1 shows.

TABLE 1. Statistics of Breaking Loads *

Variables Sample Group
o 2 3
Number of Samples 200 200 200
Loading Rate (in./min) 0.5 0.05 0.005
Median Failure (psi) 13,870 12,320 10,770
Standard Deviation (psi) 1,140 1,040 903
Coefficient of Variation (%) 8.23 8.43 8.37

* This table is for glass rods where all conditions are identical except the load-
ing rate.

Such excellent measurements of all the statistical parameters unfor-
tunately do not exist over a large range of median breaking strengths.
However, there is some information on dispersion of strength for very
strong fibers.

Thomas % recently reported that very small fibers (2 X 10~* in.) had
a coefficient of variation of only 19, at 550,000 psi. Furthermore,
Mould # showed that his fibers (2 X 10~* in.) broke in two classes: One
out of twenty broke at a low stress, while the rest were distributed sym-
metrically about 610,000 psi with a coefficient of variation of 2.4%. The
only way to reconcile these results with the statistical flaw hypothesis is
to assume that at the 500,000-psi stress level the fibers are being tested
in the absence of flaws (in which case the theoretical strength is one order
less than previously supposed), or that there is a very large number of
very small identical flaws (which, by the Griffith formula, would be
about 30 A deep). The statistical flaw hypothesis predicts that fibers
with strengths somewhat below 500,000 psi will have a very large dis-
persion, and that the strength distribution curves will be skewed toward
lower strengths. This statistical prediction needs to be confirmed ex-
perimentally.

The experiments of Otto * and Thomas * show that the often-quoted
result showing the average stress decreasing as the fiber size increases
is an oversimplification of the true situation.” 1 This observation results
from that method of pulling fibers whereby a smaller fiber is made by

t Bateson % was the first to present cogent reasons why the size effect in small fibers
is incidental rather than fundamental. Anderson * later refined Bateson’s suggestions.
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pullin\g faster. If a] conditions are held constant (including the pulling
speed), fiber Strength is nearly independent of diameter. Anderson
showed that the pulling speed affected the quenching time of the fiber
nearly as much as the diameter and, consequently, fibers of slightly
different diameters may or may not have drastically different thermal
histories. 1In terms of the statistical flaw theory, this means that all the
statistical parameters (including the flaw density) ordinarily change as

fibers of different diameters are made and, therefore, great care must
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Fig. 2, Distribution of breaking strength with variations in stress
according to the statistical distribution of Fisher and Hollomon.%

As the flaw density decreases, the median strength and the dispersion
increase.

be taken to apply the statistica] theory to explain the loss of strength
with diameter, Figure 2 shows how the median strength and disper-
sion change with the flaw number, according to the statistical theory
of Fisher and Hollomon,

A rapid variation of strength with diameter could be accounted for by
the statistical flaw theory if it is assumed that the flaw density varies rapidly
with the quenching time, Anderson showed that the quenching time
of very fine fibers was of the order of the relaxation time of the glass
molecules at the bushing temperature, Consequently, all chemical
phenomena at the surface, such as volatilization, adsorption, and devitri-
fication, are restricted because of the limited time available for chemical
processes at the surface. ‘This limits flaw formation. F urthermore, the
fiber cools uniformly because of 5 low temperature gradient that tends
to arrest the same specific volume at the surface as in the interior. This
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flaw theory is the size effect found in the fracture of glass plate using
spherical indenters. The measurement consists of the load required for a
sphere of given size to produce a hertzian ring crack. The experiments
by Tillett # show that this concept is greatly oversimplified. In her ex-
periments, the stress changed by a factor of 2 as progressively smaller
indenters were used, but she found that the deviation did not change.
This result is quite contrary to the statistical theory. She further pointed
out that if the breaking force is limited by the maximum stress on a flaw

2.0 T T
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=
ED 1.6 ——— Theoretical, using calculated
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@ \ Flaw density = 103 cracks/cm?
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Relative length of 13-u fiber

Fig. 4. Variation of average strength with length using the
statistical distribution of Fisher and Hollomon.*

(Eq. 6) the breaking force is proportional to the square of the radius
of the indenter, according to the hertzian equations (£/r* = constant).
It turned out, however, that in the region where the stress varies with
area, F/r = constant. 'This latter measurement, shown in Fig. 5, can
only be reconciled with the hypothesis that failure occurs when the in-
tegrated strain energy, rather than the stress, exceeds some maximum.
It was observed that at larger indenters the relation F/r? = constant was
observed, indicating that flaw statistics may be valid for large stressed
areas. Tillett observed that in the region where the law F/r = constant
is valid the fracture proceeds very slowly, suggesting quasi-equilibrium
between surface and mechanical energy, whereas in the region where
I7/7? = constant is valid, the fracture occurs instantaneously. Tillett
concluded from her experiments that “‘the variation of strength with in-
denter size is not due solely to the flaw distribution of the material, as
has been previously suggested.”

In view of Tillett’s results, the statistical flaw theory can be considered
only marginally successful in explaining the size effect. It is important
that an experiment be performed to determine carefully the coeflicient
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of variation as the median strength is changed, both for strong fibers
and spherical indenters on plate.

In spite of the lack of data on dispersion and Tillett’s experimental
evidence to the contrary, the statistical flaw theory appears to be the best
explanation for the size effect. Experimental evidence relating flaw den-
sity to strength will be discussed in a later section.
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Fig. 5. Variation of breaking force with indenter radius
after the experiments of Tillett. Line on lower part of
curve is inconsistent with concept that glass breaks when a
maximum stress is exceeded.

Variability in Strength

The statistical faw theories were originally intended to explain the
variability of strength, which is usually reported to be high. A random
distribution of flaw sizes leads to a scatter of the observed strength values,
such as is shown in Fig. 2. However, a number of workers have pointed
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out that the variability in strength may he overemphasized owing to an
incorrect assignment of the stressed area. What is measured is the break-
ing load, and from this value the stress is usually computed by dividing
by a predetermined area.

Too often, the experimentalists have not made the necessary correc-
tions for the area by determining the exact location of the origin of
the fracture. Unpublished Mmeasurements by Brandt ® illustrate this
danger. He broke thin circular glass plates by hydrostatic water pres-
sure. If he calculated the stress as though each fracture had originated
in the geometric center, the coefficient of variation was about 279, a
typical figure usually found in the literature on this subject. However,
when he determined the location of the origin of each break and com-
puted the stress at that point, the coefficient of variation dropped to
119 with the median unchanged. Much of the literature on strength
measurements is reported for rods broken in bending. In this case, the
stress depends in a Very sensitive way on location of the origin of the
fracture. Unfortunately, in many cases, the reported values of stress

have not been corrected, and the reported dispersion is, therefore, of no
theoretical significance.

initial portion is smooth, forming the mirror, and the remainder of the
fracture face ig rough, forming the hackle, * Smekal # found that for
circular rods the breaking force divided by the hackled area was nearly
constant under g variety of conditiong that were sufficient to change
drastically the nominal stress. Terao % and Levengood report similar
results for other types of fractures.
the stress is small,

Shand derived the stress concentration factor for a crack with the
dimensions of the mirror 47 His theory states that during the initial part
of fracture the crack is in quasi-equilibrium but slowly expanding, the
stress on the edge of the crack increasing as the radius of the mirror in-
creases.  Soon the crack becomes sufficiently large that the real stress
at the edge of the mirror reaches the theoretical strength of the glass,
whereupon the crack increases jts velocity rapidly to the maximum
velocity, thus causing cleavage. The stress concentration resulting from
a flaw is 4 = 27rV/c/p. Taking the mirror to be the flaw, Shand derives
the value 4 = K(D,r)/V'p where K is a prescribed function of the rod
diameter and the radius of the mirror. The radius of curvature of the
crack p must he assumed.  Shand showed that even though the mean

In general, the mirror is large when

* There are actually several distinct regions of the fracture face, which all blend

into each other, but the separation into mirror and hackle is well defined and practical.
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breaking stress (no correction) VZ[‘iC(.i by 209%, askthe ratea lzie loofa(\l}%%
changed, the corrected stress (muliplied by the unknown v
varied only 497, ‘

One objection to Shand’s idea is th:at'the con‘c?p.t‘ of ttzrj:;cptlt,llfrie:
process being broken up into onlytwo dlstlflct Phasef, lsfan 6} d,surface
cation of the facts, as any microscoic exammatlc.)n of a ra?t‘ffe N
will show. Yet the concept has comiderable n}erlt because it is c?n31s(the
with the concept of two distinct onditions for crack.prop‘aﬁatix;)rr;l Om;
catastrophic one determined by Iq. 5 a.nd the quasfgqmi)cl;nditiom
determined by Eq. 6). It also coircides w1th.. the two di efex?‘ ConSiqten;
found by Tillett for the formation of hertzian cracks t is cons krac_
with the phenomenon of static fatigue, .where the u'ntlal partv 0
ture process forming the mirror is the time-consuming pro(c:,.ss‘.nCt tases

The concept of the fracture process composed of t»'vo : :tl o fla”
although still a simplification, appears to be .a f'efreshmg idea . need};
reconcile the Griftith flaw theory with staust‘lc‘al met.hods. t‘ <
further confirmation, but Shand’s work is sufficient evidence to justify
it ing hypothesis. - .
! CIIF ?h‘izoiili:aais éznrrect, the problem of strength i‘s slightly change(‘i 1r;
focus. Whereas the problem was once to detex“mme‘ at what lnor;u::e
strength glass failed, it has now become a quesn(‘m of fat whatgug?nicm-
cnergy balance will be such that it will form a mirror from aa; rcropELe
scopic crack. The mirror, when large enough, will caus.elc T.h P e
failure bv exceeding the theoretical strength of the material. “
raises a riumber of prablems that will have to be resc?lved. For1 c;‘x(;tmpn d,
it is not clear whether failure (the growth of the mirror) wou d depe <
On a maximum stress or a maximum strain energy; the.experlments
Tillett > and the papers by Roesler ® support the latter view.

The Evidence for Submicroscopic Pre-existing Flaws

Much effort has been exerted in the attempt to v'erify the relatlﬁ)nshéx)p
between the crack depth ¢y and the nominal }?reakmg stre:qs O'C‘( q(.iin .
In the region of crack cdepths of 1072 to 107® mm (the Cérrefolz ug
stress is 7000 to 15,000 psi), Shand has sho“.m that the relatxo‘n ho Z iE
quite well ¥ However, if this relationship is exlrapo‘la't‘efl, a;:wov\:rith ’
Fig. 6,474 a stress of 500,000 psi corresponds Fo a pre’-c.x}llsu‘r?gl. it
crack depth of one-quarter wavelength of light, .whl.c) ‘ 115 ‘);\ @ the
power of direct detection by optical methods. This difficu ty has ¢
some authors to doubt the reality of such small flaws. ‘ B

The work of Shand ¥ leaves no doubt that the effect of very minor
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surface injuries has a drastic effect on the strength of the glass. He took
a group of -in. rods, carefully prepared under uniform conditions, and
divided them into several groups. The first untouched group broke at

108 :
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IR E - EL
af- 3 =
|
3p—- :
\" Gordon, Marsh, and Parratt
2 : \ ; <
E 105 \\
.- B \\\
g ° Griffith X, ] i
=4 5 ; o-N t '
i 4 (esm]nated) 1\ \\(/i— Three-dimensional crack -~
£ S Poncelet N\ ‘
3 (estimated) ~ \\
a 2} + | 5
: Two-di s ‘ k)‘ X
£ wo-dimensional crac
% | : AN\
& e
NoN
. NN
N I i N\
4 1 S
\ 5 % . Y )
"""" i
| Griffith o\\>
| S— = )
3| (adjusted) ! ‘)\ \
o Shand l i !
8Ll | S T O N U T O U O N O I}
10=* 1073 1002 107! 1 10 10% 10°

Crack depth (mils)
Fig. 6. Relation between crack depth and stress according to Eq. 6.
Open circles represent measurements of Shand.*™ Asterisk represents
findings of Gordon, Marsh, and Parratt.®

73,500 psi. The second group was damaged by dropping fine sand upon
the glass from a height of 3 in., whereupon the strength dropped by
509, ‘The remaining groups werc sandblasted under air pressure,
whereupon the strength dropped to about 16,000 psi, the value custom-
arily found in commercial rods. Shand showed that minor injuries on
the surface were of greater destructive power than major injuries. He
also took a second series of 3-in. rods which he tested as-received at 6000
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psi. When he sandblasted them, their strength dropped further, but,
when he acid-polished them by removing about 2 mils of the surface,
the strength rose to 250,000 psi, a value comparable with that of fine
fibers. This evidence, although indirect, supports the concept of pre-
existing fAaws.

Direct evidence for submicroscopic flaws has been sought by using
electron microscopy and decoration techniques. The former technique
has not revealed any striking evidence of flaws in glass with strengths
above 50,000 psi, although considerable detail of the topography (in fact,
too much detail) is found for strengths below that value.®® The latter
technique has been more successful. Andrade and Tsien 5t found oriented
cracks on the inside of tubes where abrasion was nonexistent. Gordon,
Marsh, and Parratt # have developed further the sodium vapor decora-
tion technique of Andrade and Tsien and have found convincing evidence
of small flaws. Their photographs prove conclusively that long (50 w),
narrow (200 A), and shallow (1000 A) cracks exist in strong glass before
the application of stress and that these cracks multiply with stress. They
showed that the crack density is low whenever the glass breaks at high
stress, thus supporting the statistical law hypothesis. From their Figs. 4
and 5, the linear flaw density is seen to be about 10? cracks/cm for a break-
ing strain of 0.3Y; and about 10? cracks/cm for a breaking strain of 3.09%.
Since the cracks seem to have the same distribution of severities in both
figures, the difference in strength most likely results from the difference
in flaw density.

Cracks 200 A wide and 1000 A deep could easily account for strengths
in the order of 200,000 psi. Consequently, the work of Gordon, Marsh,
and Parratt is an excellent confirmation of the pre-existing flaw hypoth-
esis, as well as incidental evidence for the statistical flaw hypothesis. The
cracks were not related to the direction of drawing and were not charac-
teristic of those cracks caused by abrasive damage. It appears from
their work that large compressive stresses close the cracks so well that they
will not decorate. Figure 7 shows the crack density for strong and
weak glass, Fig. 8 shows the crack formation around abrasive scratches,
and Fig. 9 shows the cracks that were decorated for both tension and
compressive stresses in the surface layer.

In view of the experiments described above, it is easy to assume that
cracks less than 1000 A deep do exist. Furthermore, cracks much deeper
than 1000 A cannot be seen optically if the width is small. Elliott *
showed that a flaw no more than several atomic diameters wide would
account for loss in strength. It may be concluded that there are cracks
which operate to reduce the strength that have not been revealed by
decoration techniques.
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An Alternative to the Griffth Theory

: e S 2 her
Cracks are a special t vpe of defect. It has b“““/“holt’ffg;ﬁij};’:ﬁ)giim’
types of defects could operate to reduc S“‘?“gth_’ suc ‘115 crradienhts at the
inclusions, submicrosca P ic regions of strain, str:ct‘uvrﬁll Dthegc e i
surface, and dev itrified pProduacts zat the .:‘u.rf'flCC- _yvhre g ' e
complicate the general picture, the (’”H]th_ Critcrign '(thrz)lt explain's
cracks is a self-consisten t, experimentally "er‘ﬁed theor}‘ i ’
the main fe atures of stremngth and fracture of bru;tle mate'rx;x :md S ncture
However, other theories have arisen to explain s.tre.ngtﬂ N
of brittle solids that d o not use the concept <_)f pre-existing a; ‘Z)rding s
the theory by Poncelet % is the outstanding e’xax'np.le.“ ;1 ZC e e
Poncelet, ‘H:aw’fs do not exist before the stres% ‘ This 1sht((1ni:S mETRG
genesis hypothesis ancl is based up>on the statistical mecha L approact
Which states that nomequilibrium precesses are determvmleh tl’?ege e
at which ch.emical bands. are broEen, less the rate at whllC iAth A
are formed. With ne str ess, the rates are ex\:actly' equal,‘ but, :Yvitv‘ (101;
the rates are biased, amnd the owverwhelming ‘y‘n()leculflr. arlxctlhat’ s ex.
vibrations per second ) is reflected in a px'ol)al){llty f““‘i‘f’ﬂ deriv;:d S
tremely stress and temp erature «lependent. The eqluat l;)ho‘\;sl e et
really an expression for the probz bility ‘Of An EyEnt ;13 ti}i% is equal to
rate of bonds breaking, and the assumption is made that this i

cen emphasized
* The possibility that de<itrifiedd prosciucts create the crack has beer p
by Gordon and co-worker-s. 42
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‘the macroscopic rate of crack propagation. The virtue of this approach
1s that it could account for breakage of glass at stresses considerably below
the theoretical strength without the a prior; assumption of defects. How-
ever, while one hypothesis is removed, other assumptions are invoked.
I-n place of assumptions about the depth and geometry of a crack, assump-
.txon.s are made ahout the activation energy and the manner in which
ntrinsic energy is biased by the macroscopic load.

I’(?ncelet has developed this hypothesis into a complete and self-
ConswtenF theory which accounts for time effects (static fatigue), crack
bropagation, variability of strength, and comminution.’* The illtCr(‘St-
ing feature of the flaw-genesis theory is that it leads to virtually the same
final equations as the pre-existing flaw theory. This is demonstrated
]i)yl’l the comparison of several stress-time equations for static fatigue, as
ollows:

logt=4,+ B, log & (pre-existing flaws) Charles %

logt= A, + B, 1og o (law genesis) Poncelet
logt = A4; + B,/ g2 (pre-existing faws) Elliott !
log ¢t = 4, + By/o (Aaw genesis) Stuart and Anderson

T!).ere are considerable experimental data that extend over a factor of
10% in elapsed time. FEven S0, N0 one equation fits the present data a
great deal better than the others, since there is not enough difference
between them to he of consequence.®  Similar situations exist for the
theory of crack propagation, as was shown in the second section.

From a fundamental point of view, the disagreement between the
ﬂ:aw-genesis and the pre-existing flaw hypotheses is a reflection of the
difference between the point of view of statistical mechanics and classical
thermodynamics.

There is some experimental evidence that stress creates Haws; this
was‘shown by Gordon, Marsh, and Parratt.® McAfee ¥ showed that
t'cnsxle stress greatly enhances the diffusion of helium, but that compres-
SlOIl. and shear stresses have virtually no effect. Stress-enhanced diffusion
begins to occur at a threshold in stress that is ahout half the nominal
breaking stress. The effect is so marked that it can he explained only
b.y reversible fissures which open and close with the stress. This observa-
tion lends some credence to the flaw-genesis hypothesis. On the other
hand, these fissures cannot accelerate the passage of argon, so there is
doubt that the fissures are ever large enough to concentrate stress.

* .
None of the above cquations fits the data except for the intermediate ranges of
a log time-log stress plot. The stress at very short time and very long time is independ-
ent of time. \

”
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Summary

The Griffith theory is today in a stronger position than it was one
decade ago. A completely quantitative theory of strength and fracture
is not yet available, but all the general features are explained very well.
No experiments are in direct contradiction.

In the writer’s opinion, the major developments of the past decade
were: (a) the development of the equations of crack propagation by
Mott; (b) the extension of Griffith’s equation to include static fatigue by
Orowan, Elliott, and Charles; (¢) the experiments of Otto which proved
Bateson’s suggestion that the stress-diameter relationship for strong fibers
is incidental rather than fundamental; and (4) the techniques developed
for the observation of pre-existing flaws by Gordon, Marsh, and Parratt,
and their discovery of devitrified layers at crack sites.

There are still some serious questions that have to be resolved. The
experiments of Tillett concerning the energy criteria of fracture and the
report of Mould and Thomas on the dispersion of fiber strengths need to
be reconciled with the statistical flaw theory. In particular, many good
experiments on the dispersion of strength are needed. For example,
experiments need to be performed where the dispersion is réduced by
exposing the glass to a large number of identical, relatively large, flaws.
Shand’s idea that fracture is at least a two-stage process, needs further
checking. Further evidence of flaws by decoration technique is needed
to determine their geometric characteristics and distribution. The
speculation by Gordon and co-workers that cracks originate at-devitrifi-
cation sites warrants further experimentation.

Note added in proof: Dr. Sydney Bateson has communicated new results
pertinent to the discussion in the section entitled “Variability in Strength.”
(These results have been presented orally and will be published by Dr.
Bateson.) He measured fracture velocities of running cracks produced
from edge aws in plate. The standard deviation of the breaking strength
was greater than 159, However, the standard deviation of g,V'R (R is
the radius of the mirror) is about 19, tending to confirm Shand’s hy-
pothesis that fracture is a two-step process in which the mirror is the
Griffith flaw. On the other hand, the mirror itself is growing so rapidly
that it cannot be considered in quasi-equilibrium. Obviously, improve-
ments on Shand’s ideas are needed.
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