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ABSTRACT. Developing a reliable numerical modelling technique is 
considered as challenge for fracture assessment of the geological materials, 
which are much subjected to hydrostatic pressure. For this purpose, the 
mechanical behaviour and the fracture pattern of a middle strength rock 
material, called Pietra Serena sandstone, is investigated both numerically and 
experimentally under a Four-Point Bending (also called Flexural) testing 
program. For the numerical approach, an innovative method, namely FEM-
coupled to-SPH, is exploited due to its capabilities in dealing with rock 
mechanics related issues. Two different material models, which are the 
Karagozian and Case Concrete (KCC) and the Extended (Linear) Drucker-
Prager, are exerted to assess their capabilities. The Flexural strength and the 
crack initiation area are studied based on the state of the stress in various parts 
of the specimen in both models, and finally the results obtained from the 
numerical models are compared with the data obtained from the experimental 
tests in order to assess the capability of the modelling approach. 
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INTRODUCTION 
 

ock materials are highly dependent on the hydrostatic loading pressure, moreover their tensile strength is 
considerably weaker than the compressive one. Thus, the characterization of the tensile behaviour is of great 
importance in geophysical applications. The tensile behaviour of rock materials, which is also one of the most 

important parameters to predict the rock’s boreability, can be determined in several ways, i.e. by a direct tensile test, a 
Brazilian splitting disk test, a (three- or four- point) bending test, etc [1]. The direct tensile test seems to be the standard way 
to determine the maximum principal tensile strength of rock materials. However, due to several issues, including the 
complicated set up, the non-uniformity and the perturbation in the uniaxial stress field introduced by specimen grips and/or 
slight imperfections in the sample preparation and the material inhomogeneity, etc., its usage is inconvenient [2-4]. 
Therefore, rock engineers perform the Brazilian and the Flexural (four-point bending) test to investigate the tensile 
behaviour. These tests are designed to investigate indirectly a normal tensile stress state (at least) in a specific portion of the 
specimen. The numerical and experimental investigation of the mechanical behaviour of a middle strength rock material 
which is subjected to a Four-Point Bending (or Flexural) test is the aim of this research study. 
The Four-Point Bending test is an indirect way to estimate the tensile strength, which consists of a beam in flexure. The 
strength of the beam, in this test, is expressed mainly in terms of modulus of rupture, which usually tends to overestimate 
the tensile strength up to one-hundred percent [4]. This overestimation is mainly caused by the hypothesis of the test which 
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assumes that the mechanical characteristics, i.e. the stress-strain behaviour, are linear all the way through the critical cross-
sectional area of the beam [5]. Due to the sensitivity of this test to the boundary conditions, it may be inaccurate in large 
displacement (which is similar to the direct tensile test) [6]. In addition to these difficulties, the strength of quasi-brittle 
materials, e.g. rock, is considered to be dependent on their size and scale [7-9]. However, the Flexural test is considered as 
the simplest method to investigate the creep (time-dependent behaviour) of rock [10], and accordingly, represents an 
interesting alternative for the investigation of the stress-strain relationships [11, 12]. The experimental campaign designed 
for this research study follows the protocols of the ASTM standard and the results can therefore be easily compared with 
similar studies, i.e. on other materials. 
The mechanical properties of several types of rock materials, including sandstones have been studied in a large variety of 
research. Among them, the Berea sandstone which is deposited sub-aqueously as offshore beds in a considerable number 
of well drilling applications, is widely investigated by the oil and gas industries [13, 14]. It is a sedimentary rock with high 
porosity and mostly composed of sand-sized grains [15], however, it is not a highly accessible material resulting in a relatively 
high expense for testing purposes. An extensive literature review [16-18] exposed the presence of another rock material, 
which is called Pietra Serena sandstone, with similar mechanical characteristics to Berea sandstone. These similar properties 
led the authors to perform the experimental tests on the Pietra Serena sandstone. It is anticipated that the experimental data 
of the flexural test on the Pietra Serena can be used to have an outlook of the behaviour of Berea sandstone. 
The development of a reliable numerical method in conjunction with an accurate constitutive material model has been 
considered an essential tool in the stress analyses. Several numerical modelling techniques have been recently implemented 
[19-23] to simulate the rock materials. One of the most common and accurate numerical simulation techniques, which is 
implemented in research fields as well as in industrial applications, is the Lagrangian Finite Element Method (FEM). 
However, this method cannot appropriately deal with large deformations and tearing, which are often present in the 
numerical modelling of fractured rock. The Smooth Particles Hydrodynamics (SPH), on the other hand, is a mesh-free 
Lagrangian method that discretizes a system into a number of “mesh-points” (or particles) carrying the field variables. Due 
to the not fixed nodal connectivity of this method, the SPH is able to cope with highly distorted elements [21, 24, 25]. The 
FEM is however more efficient in terms of accuracy and computation time when SPH particles are used. Therefore, an 
advanced technique is exploited, inspired by the research study of the same authors of the present paper, Bresciani et al., 
[25] to take advantage of both the Lagrangian FEM (before the occurrence of high distortion) and the SPH methods to deal 
with large deformation, mesh distortion, etc. In this numerical model, which is called FEM-coupled to-SPH, the specimen 
is initially modelled by Lagrangian 3D elements and subsequently by means of an eroding algorithm. The elements which 
reach a specific failure level are eroded, and subsequently these eroded elements are transformed to SPH particles with the 
same mechanical properties. 
Two commercial numerical solvers, LS-DYNA and ABAQUS, are used to replicate the experimental tests in conjunction 
with two constitutive material models: the Karagozian and Case Concrete (KCC) model and the Extended (Linear) Drucker-
Prager (LDP) model. The KCC is an advanced material model, developed by Malvar et al. [26-29], available in LS-DYNA, 
that decouples the volumetric and deviatoric responses. This material model consists of three-independent failure surfaces 
to determine the accumulated damage. The LDP, on the other hand, is based on the conventional Drucker-Prager model. 
This material model which is available in ABAQUS, takes advantage of some improvements, i.e. the flow rule plasticity [30] 
and is particularly interesting due to the potential use of different shapes of the yield function (linear, hyperbolic and 
exponential), and additional cap yield function and the possibility to be used in conjunction with an equation of state. 
However, due to the lack of a tension (or pressure) cut-off level, the numerical results have to be critically evaluated. The 
numerical results of the KCC and LDP are thus compared in detail to show the reliability of the models.  
The article is divided into the following sections. The methods and the results obtained during the experimental tests are 
reported in section 2. In section 3, the theories of the KCC and the LDP material models are discussed in detail. Then the 
experimental configuration suggested by the ASTM is replicated in LS-DYNA and ABAQUS by the FEM-coupled to-SPH 
method in conjunction with the KCC and the LDP material models, respectively. The numerical results of these models are 
then compared with each other and discussed in section 4 by the further comparison of the numerical modelling results 
with the experimental data.  
 
 

EXPERIMENTAL TEST  
 

he experimental configuration for the Flexural test is designed based on the protocols of the ASTM standard [31]. 
This configuration consists of a rectangular cubic specimen which is supported by two fixed rollers near the end of 
its length span (see Fig. 1a). Thus, the specimen is loaded vertically by means of two compressive rollers at a certain T 
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distance from the center of the specimen. This symmetrical configuration causes nominally zero shear forces, and 
accordingly constant bending moment between the two compressive rollers. The normal tensile and compressive stresses 
appear at the top and bottom of this middle span, respectively. According to the beam theory, the maximum principal stress 
corresponding to the ultimate loading value can be determined, which is called the flexural strength and gives a rough 
approximation of the principal tensile strength.  
The flexural strength tends to overestimate the tensile strength, because the measuring process considers a linear relationship 
(as the stress-strain behaviour of the material) at the beam critical cross-section. Furthermore, all the materials have a certain 
amount of anisotropic level in their structure [4]. The flexural strength .flex  [MPa], which is given by the Eq. (1), can be 

considered as a parameter to validate the numerical models.  
 

 . 2

3

4
flex

WL

bd
                     (1)  

 
where, W was measured as the maximum applied force. The experimental tests within this study were performed on five 
specimens of Pietra Serena sandstone with the same geometries. The span length L, width b and height d of all the specimens 
were equal to 318, 102 and 32 [mm], respectively. However, the total length of the specimen was measured as 381 [mm]. 
Two pairs of steel rods were embedded to the testing apparatus (see Fig. 1). The axes of lower rods were fixed to the bed 
of testing machine while the upper rods were displacement controlled by means of a compressive platen. According to [31] 
the speed was set to 0.2 [mm/min] in order to apply the load at a uniform stress rate of 4.14 [MPa/min]. 
 

 
 

Figure 1: (a) ASTM arrangement of Flexural test [31]; (b) corresponding experimental layout of this research work. 
 

 
 

Figure 2: The extensometer set up on the flexural test configuration. 

(b) (a) 
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This study is aimed to investigate the mechanical response of the rock based on both the maximum loading and the 
displacement. The applied load of the compressive platen was measured automatically by the load cell of the apparatus. It 
is not mentioned how to measure the displacement of the specimen on the ASTM standard. It was decided to measure the 
displacement of the specimen by means of a displacement gage contacting extensometer. As can be seen in Fig. 2, the 
flexible tip of the extensometer is located at the center of the lower face of specimen. However, since the extensometer, 
itself, is fixed to the fixture of the testing machine, the displacements of all the components in between are measured. 
Therefore, in the configuration expressed in Fig. 2, the experimental data provided by the extensometer contains the 
displacements of the specimen, the fixed rollers and the steel blocks between the rollers and the fixture of the apparatus. 
This set of data therefore doesn’t represent the actual displacement of the specimen, but since the mechanical properties of 
the rollers and the steel blocks are known, they can be replicated in the numerical simulations as well. This set up is thus a 
convenient way to record the experimental data of the flexural test in terms of displacement. 
The broken specimens after performing the flexural test are indicated in Fig. 3. In all of the specimens, cracks initiate at the 
lower part, which is subjected to tension stresses and then propagate in an upward manner through the depth. Also, the 
cracks are located under (and close to) the section of the specimens which are in contact with the moving rods.  
 

 
 

Figure 3: The broken specimens after performing the flexural test; (a) front view; (b) isometric view. 
 
The maximum load, displacement and the flexural strength are reported in Tab. 1, separately for each specimen.  Average 
values, 95% Confidence Interval (“95% CI”) of the average value and standard deviations has been also calculated from 
experimental data. CI is an interval that try to estimate range of the average value of the population from the sample data. 
Due to the large variability of the mechanical behavior of rock this range is more representative than the single average 
value obtained from the 5 experimental tests. Fig. 4 also expresses the load-mid span displacement diagram of the all 
specimens. 
 

 
Maximum Load 

[kN] 
Maximum 

displacement 
Flexural Strength 

[MPa] 
Specimen K1 3.59 0.502 8.3124 
Specimen K2 4.258 0.662 10.024 
Specimen K3 2.963 0.313 6.831 
Specimen K4 4.16 0.669 9.7927 
Specimen K5 4.206 0.628 9.9576 

    
Average value 3.8354 0.5548 8.9836 

“95% CI” of average value [3.1433; 4.5275] [0.36737; 0.74223] [7.2530; 10.7140] 
Standard deviation 0.55736 0.15095 1.3937 

 

Table 1: The experimental results of the flexural test. 

(a) (b) 
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Figure 4: The load-displacement diagram of the flexural test. 

 
The shape of the load-mid span displacement, represented in Fig. 4, indicates a significant non-linear behaviour until the 
failure. The failure is denoted by a sudden drop of the loading level. A study by Meda et al. [32], investigated Pietra-Serena 
sandstone under a flexural test. They performed the tests on specimens with different shapes and considered a notch in the 
middle-span of the specimens to assure that the crack takes place at the center. The experimental data provided by Meda et 
al. are in a good agreement with the results obtained during this research work where the geometries are similar to each 
other; i.e. the flexural strength and the load-displacement diagrams of the Meda’s work were reported as 9.1 MPa and 3.4 
mm, respectively. 
 
 
NUMERICAL MODELLING 
 

any numerical modelling techniques have been developed for stress analyses of solid mechanics in the continuum 
domain. Among these, the non-linear Lagrangian Finite Element Method has its own privileges for a number of 
reasons, i.e. the accuracy and the convenient time consumption cost. However, a disadvantage lies within the 

reduced performance of grid-based numerical methods to deal with highly distorted elements and fragmentation. At present, 
the Smooth Particle Hydrodynamics (SPH) is one of the most convenient numerical methods to cope with problems related 
to large deformations and fracture. This method is a numerical mesh-free approach that represents the state of a system by 
a set of particles that hold the properties of the material. The particles interact in a range which is controlled by a kernel 
(smoothing) function, so that this kernel approximation for any two given particles, i and j, can be expressed by Eq. (2). 
 

( ) ( ) ( , )i j i j jf x f x W x x h dx


                 (2)  

 
where, the W in Eq. (2) is the smooth function which can be determined by Eq. (3). 
 

 
1

( , ) ( )
( )

i j i jd
i j

W x x h x x
h x x

  


                (3)  

 
The ix  and jx  are the coordinates of the particles in the problem domain Ω and h is the distance between the two particles. 

The parameters d and θ in Eq. (2) represent the number of the space dimension and an auxiliary function, respectively (see 
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Fig. 5). Because the connectivity between these particles is considered as a part of the computation procedure, a 
straightforward handling of problems with large deformations is allowed by using the SPH method [33]. 
 

 
 

Figure 5: SPH particles in a 2D problem domain. 
 

A numerical technique, namely FEM-coupled to-SPH, was developed, inspired by [25], to take advantage of both the FEM 
and the SPH methods. The Lagrangian meshed elements were eroded after reaching a certain criterion by using this 
technique, and they were adaptively transformed to SPH particles that inherit identical mechanical properties with the failed 
elements. The implementation of this technique in LS-DYNA was carried out by calling the keyword called 
ADAPTIVE_SOLID_TO_SPH. However, since many of the material keywords available in the LS-DYNA material library, 
i.e. the ones used in this study (KCC), do not have any internal eroding algorithm, an external eroding algorithm is required 
to be implemented in conjunction with this keyword. The element erosion of the models of this article was obtained by 
using MAT_ADD_EROSION and specifying a certain value for the maximum shear strain (EPSSH). Therefore, each 
hexahedral solid element who meets this criterion will be eroded, and then by defining the two input parameters of 
ADAPTIVE_SOLID_TO_SPH keyword as ICPL=1 and IOPT=1, the software automatically replaces those eroded 
elements with a certain number of SPH particles. The number of particles can be controlled by the users, i.e. it can be 1, 8 
or 27 in case of hexahedral elements (see Fig. 6). Within this study, the failed solid elements were converted into one SPH 
particle to keep the time consumption cost low. 
 

 
 

Figure 6: Transformed SPH particles from a hexahedral 3D solid element. 
 
This method can be implemented in ABAQUS by choosing the option “conversion to particles” from “element type” panel 
at the mesh module. Unlike the LS-DYNA, an external eroding algorithm in never required since the elements which meet 
a user-specified criterion are automatically transformed to a certain number (from 1 up to 343) of SPH particles. The 
maximum principle strain is considered as the conversion criterion for all the models developed by ABAQUS in this study. 
 
Karagozian and Case Concrete (KCC) model 
The studies on the nonlinear concrete material models that were implemented by the Lagrangian finite element code 
DYNA3D at 1992 (reported in [34]), showed that the material model 16 (concrete/geological material) presented 
appropriate and attractive features. To overcome the shortcomings of this material model, Malvar et al. developed another 

(a) (b) (c) 
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model within 1994 to 2000 [26-29], known as the “Karagozian and Case Concrete (KCC or K&C)” model, by applying 
several significant enhancements to the material model 16.  
The Karagozian and Case concrete model, implemented in LS-DYNA, consists of three-invariant failure surface 
formulation, i.e. 1 2 3( , , )f f I J J , where 1I  is the first principal invariant of the Cauchy stress, 2J  and 3J  are the second 
and third principal invariants of the deviatoric part of the Cauchy stress, respectively. It is more convenient to use a 
cylindrical set of coordinate system for the cohesive frictional material since the principal stresses can be immediately recast 
into this format as Eq. (4). The formulation of KCC model is explained by means of this cylindrical coordinate system as a 
clearer way of guidance for readers. 
 

 
1

2

3

cos
1 2

cos( 2 3)
33

cos( 2 3)

  
    
   

     
             
          

               (4)  

 
where, the  ,   and   are the Haigh-Westergaard coordinates defined as Eq. (5). 
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J q
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r J

q J



  




  



  

         

  

             (5) 

 
The failure function of the KCC material model can be derived by Eq. (6) in terms of the Haigh-Westergaard stress 
invariants. 
 

ˆ( , , ) ( , ) [ ( ), ]cf f f r p                        (6) 
 
where, ( , )cf   corresponds with the failure surface in the triaxial compression state of stress, when the Lode angle θ is 

equal to 60 , and the non-dimensional function ˆ[ ( ), ]r p   is the ratio between the current radius of the failure surface 
and the compressive meridian. The Eq. (6) is discussed in detail below.  
The Karagozian and Case concrete model takes advantage of the three-fixed independent failure surfaces in the compressive 
meridian (   plane), which correspond to the yield, the ultimate and the residual strength of the material. Hence, the 

function ( , )cf    is defined for each one of these failure surfaces separately by Eqs. (7), (8) and (9). 
 

  0
1 2

2 0.55
( ) 2 3 [ ( ) ;( ) 0.45( ) ]

3 3 2
y m m yy
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          (7) 
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                 (8) 

 

 
1 2

2
( )

3
r

f f
a a








                  (9) 

 
The stress invariants for an axisymmetric loading condition, when 1 a   is the axial stress and 2 3 l     are the 
lateral stresses, can be re-written as Eq. (10). 
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                (10) 

 
Therefore, the equations of the three-failure surfaces for the axisymmetric state of stress can be written as the Eqs. (11), 
(12) and (13). 
 

  0
1 2

0.55
( ) [ ( ) ; ( ) 0.45( ) ]

3y m m yy
y y

p
a p p
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          (11) 

 

0
1 2

( )m
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                  (12) 

   

1 2

( )r
f f

p

a a p
 


                 (13) 

 
where, the ia - parameters are the user-defined input parameters to define the failure surfaces in the compressive meridian. 
These parameters can be calibrated based on the experimental data of the triaxial compression test by means of a curve-
fitting approach, e.g. a genetic algorithm. The parameter p is the pressure (positive in compression) or the mean stress equal 
to 1 2 3( ) 3    . The meridian plane defined by means of the above-mentioned equations is shown schematically in 
Fig. 7. 
 

 
Figure 7: Schematic representation of the KCC failure surfaces in the compressive meridian. 

 
As written in the Eq. (6), the KCC material model considers the effect of the third invariant, i.e. the Lode angle θ, by means 
of the function ˆ[ ( ), ]r p  . This function was derived from the Eq. (14), which is the shape of the failure criterion in the 
deviatoric plane, proposed by Willam and Warnke [35]. 
 

  
2 2 2 2 2 2

2 2 2 2

2 ( )cos (2 ) 4( )cos 5 4
( )

4( )cos (2 )
c c t c t c c t t t c

c t t c

r r r r r r r r r r r
r

r r r r

 



     


  

           (14) 

 
where, ( )r   determines the distance of the failure surface at the deviatoric section by considering the effect of the Lode 

angle θ. The parameters cr  and tr  express the distances of failure surfaces from the hydrostatic axis at the compressive and 
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tensile meridian, respectively. The deviatoric plane of a Willam-Warnke failure model is indicated in Fig. 8. In this figure, 
the TXC, TXE and SHR stand for triaxial compression, triaxial tension and pure shear respectively.  
 

 
Figure 8: Deviatoric section proposed by Willam-Warnke model 

 
The ˆ[ ( ), ]r p  , which is the ratio between the current radius of the failure surface ( )r   and the distance of the failure 

surfaces from the hydrostatic axis at the compressive meridian cr , is computed by means of the Eq. (15). This equation was 

obtained by dividing both sides of Eq. (14) by cr . In order to present the term ( )p , which is a strength index of brittle 

material related to the confining pressure that a material is subjected to it and equal to t c    (in KCC model also equal 

to t cr r ), both the numerator and the denominator of the right-hand side of equation are divided by 2
cr . 

 

 
2 2 2 2

2 2 2

2(1 )cos (2 1) 4(1 )cos 5 4( )
ˆ[ ( ), ]

4(1 )cos (1 2 )c

r
r p

r

 


        
  

   
           (15) 

 
The fact that r̂  is just a function of ( )p  and θ, and the lode angle can be determined based on the loading conditions, 
implies the role of ( )p  for computational purposes. It means that the implementation of the three invariant failure 
surfaces is completed by means of this parameter ( )p . This parameter generally depends on the hydrostatic stress and 
can be obtained empirically. Malvar et al. in [28] defined this parameter as a linear piecewise function on the full range of 
pressure according to Eq. (16). 
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              (16) 

 
Where cf   is the unconfined compression strength, tf  is the principal tensile strength and α is an experimental parameter 
related to the biaxial compression test. According to the Eq. (16), ( )p  varies from 1⁄2 to 1, which is in accordance with 

the experimental data previously obtained. It also indicates that 8.45 cp f   is the transition point in which the compression 
meridian is equal to tension one, and accordingly from this point onwards, there is a circular failure surface on the deviatoric 
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plan section. Moreover, it considers a value equal to 1⁄2 for the negative range of pressures. It is worth mentioning that this 
function was implemented in LS-DYNA and no input is required of the users.  
One of the most noteworthy features of the KCC model is decoupling the shear and compaction behaviour of the materials, 
which means that this model treats the deviatoric and volumetric responses separately. The deviatoric response is 
characterized by the migration of the current stress state between the fixed failure surfaces, while the response to pressure 
is defined by an equation of state as a function of volumetric strain increments. 
The damage accumulation of the KCC model, and accordingly the current failure surfaces are expressed schematically in 
Fig. 9. As can be seen in Fig. 9a, the state of stress is determined by a linear interpolation between the three failure surfaces. 
The stress-strain diagram corresponding to the unconfined compression test is indicated in Fig. 9c, which is determined by 
association of a damage accumulation function (shown in Fig. 9b. The response of the material to the initial loading, phase 
I in Fig. 9c, is considered as a linear elastic deformation before reaching point 1 in Fig. 9a. The current failure surface . .c f  

is therefore the same as the yield strength level y  at this range. A hardening plasticity response occurs after yielding and 

before reaching the maximum strength. The KCC material model determines the current state of stress at this range 
(between point 1 and point 2) according to Eq. (17). 
 

. . ( )c f m y y                           (17) 

 
Based on the level of confining pressure, a softening response occurs after reaching the maximum strength and before 
obtaining a residual strength. The current state of stress corresponds to this area (between point 2 and point 3) is derived 
according to Eq. (18). 
 

. . ( )c f m r r                           (18) 

 
where η is the KCC damage parameter used to determine the relative location of the current failure surface, which is a 
function of another parameter, called the accumulated effective plastic strain λ. 
 

 
 

Figure 9: a) the linear interpolation between failure surfaces, b) the damage function, c) unconfined compression stress-strain diagram. 
 
As can be seen in Fig. 9b, the damage function is described so that initially and prior to the occurrence of any plasticity 
responses, the value of η is set to zero. It increases up to unity at a user-defined value m , corresponding to point 2, where 
the maximum failure surface has been reached. The KCC model considers the hardening plasticity by means of this linear-
piecewise function of η - λ. After point 2, where the softening takes place, η decreases to zero at end  corresponding to point 

(a) 

(b) 

(c) 
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3, which indicates that after this point the current failure surface . .c f  is the same as the residual strength level r . This 

tabulated damage function of the KCC model can be determined by up to 13 pairs of η - λ parameters. The variation of η 
and λ is summarized in Tab. 2. 
 

η λ Current failure surface position 

0 ≤ η < 1 0 ≤ ߣ > ߣm . .y c f m         

η = 1 ߣ = ߣm . .c f m     

1 ≥ η > 0 ߣm ≤ ߣ ≥ ߣend . .m c f r        
 

Table 2: The KCC damage evaluation parameters. 
 
This material model implements shear damage accumulation by including the rate effect enhancement and different 
scenarios in tension and compression as Eq. (19). 
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           (19) 

 
where, 1 2 3( ) 3p       and tf  are pressure (positive in compression) and maximum tensile strength, respectively. 

The pd  is, the effective plastic strain increment equal to (2 3) p p
ij ijde de  (and (1 3)p p p

ij ij ij kke      is the deviatoric 

part of strain). The parameter s  expresses the strain rate effect user-defined factor; if it is equal to 0, the strain-rate effects 

is toggled off, while if it is equal to 100, the strain-rate effects is included. The parameter fr  is the dynamic increase factor 

that accounts for the strain rate effects. Parameters 1b  and 2b  govern the softening in compression and uniaxial tensile 

strain, respectively, whereas, 3b , affects the triaxial tensile strain softening. These b-parameters can be determined by 

iteration until the value of the fracture energy, fG , converges for a specified characteristic length, which is associated with 

the localization width (i.e. the width of the localization path transverse to the crack advance). 
To describe the rock compaction behaviour in LS-DYNA, this *MAT_072R3 is used in conjunction with an Equation-of-
State (EOS), namely *EOS_TABULATED_COMPACTION. This EOS provides a function of the current and previous 
volumetric strain v  for the current element pressure p. The stress tensor can be computed as being a point on a movable 
surface by means of known pressure. This surface can be a yield or a failure surface.  This function should be specified by 
users as a series of , ,v p K  sets, where K is the bulk modulus correspondent to the different vp   pairs [20]. These series 
can be generated internally by the automatic input generation mode of this material model. In case of an essential change 
of stiffness of a material, the linear bulk modulus which is defined as the 20, can be adjusted. 
 

2 1

2 1v v

p p
K

 


 


                  (20) 

 
The most significant improvement provided by the third release of this material model is the automatic input parameter 
generation capability, based solely on the unconfined compression strength [29]. This makes the use of the KCC model 
easier and accessible to most users, since there is no need to carry out extensive material characterization tests. The KCC 
model was originally developed to analyze the mechanical behaviour of concrete, and although the response of sandstone 
is expected to be similar to concrete, the results of the automatic input generation mode are only a rough estimation for 
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sandstones. However, this automatic method was used initially within this study due to the overwhelming number of input 
parameters which are difficult to obtain from current resources. Apart from the numerical results which are obtained directly 
from the automatic mode, LS-DYNA also generates all the input parameters automatically and writes them into the 
“MESSAG” file. Therefore, some of these parameters (i.e. the b-parameters) can be used in addition to the other parameters 
provided for the users by other resources. 
Previous studies [36, 37] showed that the mechanical behaviour of Berea sandstone is expected to be very similar to the 
Pietra Serena. Since the experimental data related to the triaxial compression test of Pietra Serena sandstone is not available 
(which is required for calibrating the ia - parameters), it was decided to use the experimental data of the Berea sandstone 
for the calibration the KCC material model. The initial input parameters used for the automatic mode were obtained from 
[38] and reported in Tab. 3. 
 

Density, RO [ton/mm3] Poisson ratio, PR UCS, A0 [MPa] NOUT RSIZE UCF 

2.00e-9 0.34 -62.00 2.00 0.03937 145.00 
 

Table 3: The experimental data of Berea sandstone provided for the automatic mode. 
 
The parameters RSIZE and UCF are unit conversion factors and the NOUT is called the “output selector for effective 
plastic strain”. According to [39], when NOUT=2, the quantity labelled as “plastic strain” by LS-PrePost is actually the 
quantity that describes the “scaled damage measure, δ” which varies from zero to two. When the amount of δ is still lower 
than one, the elements of the part modelled by the KCC, don’t reach the yield limit. When this amount is equal to two, the 
corresponding elements meet the residual failure level. Only at the automatic mode of MAT_072R3 keyword (when a 
maximum of six parameters are defined) the A0 parameter must be defined as a negative number to represent the unconfined 
compression strength. For instance, the -62 in Tab. 3, means the UCS is considered equal to 62 [MPa].  
Tab. 4 expresses the results obtained from the automatic input generation mode of MAT_072R3, after performing the initial 
simulation, which were also used at the full input calibration mode. 
 

B1 B2 B3 ω Sλ Edrop LOC-WIDTH 
1.1 1.35 1.15 0.5 100 1.00 1.35 

 

Table 4: The results obtained from the automatic input generation mode of MAT_072R3. 
 
Where, the parameters ω, Edrop and LOC-WIDTH are the frictional dilatancy, post peak dilatancy and three times of the 
maximum aggregate diameter, respectively. Almost all of the EOS tabular data obtained from the automatic input generation 
mode, were also used for the full input calibration mode. Only the “Pressure02” parameter from EOS keyword was changed 
to 26.1 [MPa] to reach the same bulk modulus (and accordingly the elastic behaviour) as the Berea sandstone. The tensile 
strength parameter was investigated in another recent study by the same authors [37] where the Brazilian tensile test was 
performed on Pietra Serena and the tensile strength was determined as 5.81 [MPa]. 
The pairs of η - λ parameters were changed to the values reported in [40]. A new set of ia - parameters were computed by 
the least square curve fitting method from the experimental triaxial compression tests [20]. These experimental data which 
were performed at four different confining pressure levels are reported in [41]. The ia - parameters are reported in Tab. 5 
(note that the A0 parameter here is a positive value). 
 

A0 [MPa] A1 [MPa] A2 A0Y [MPa] A1Y [MPa] A2Y A1F [MPa] A2F 

34.458 0.65629 0.00097 21.621 1.11569 0.00251 0.7563 0.00097 
 

Table 5: The ai-parameters experimental of Berea sandstone provided for the full input mode. 
 
Extended (Linear) Drucker-Prager model 
This is an advanced material model implemented by ABAQUS, which is based on the conventional Drucker-Prager 
constitutive law. There are three forms of the extended Drucker-Prager material model developed in ABAQUS which are 
the linear, the hyperbolic and the general exponential forms [30]. Within this research work, the linear form of this model 
was investigated. The linear Drucker-Prager (LDP) model consists of a pressure-dependent three-invariant failure surface 
which obtains the opportunity of having the non-circular yield surface (unlike the conventional Drucker-Prager) in the 
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deviatoric plane. This model also takes advantage of the associated inelastic flow and hardening (or softening) rules, and 
different dilation and friction angles. The general form of the failure surface in the Haigh-Westergaard coordinate system is 
given by Eq. (21). 
 

tan
( , , ) ( , ) ( )

3
pf f t d

                         (21) 

 
The effect of the Lode angle θ is considered by ( , )t    according to the Eq. (22). 
 

3 1 1
( , ) (1 ) (1 ) cos3

8
t

K K
          

              (22) 

 
where the material parameter K is defined as the ratio of yield stresses at triaxial tension to triaxial compression, which 
means it controls the shape of the linear Drucker-Prager yield function at the deviatoric plane. As can be seen in Fig. 10b, 
if K=1.0, a circular failure function presents in the deviatoric plane, which is the same as the conventional Drucker-Prager. 
It is proved that in order to verify the convexity of the yield function, the value of parameter K should be in the range of 
0.778 to 1.0. By means of an approach to match the parameters of the Mohr-Coulomb and linear Drucker-Prager (for 
materials with low friction angles), K can be defined according to Eq. (23). 
 

3 sin

3 sin
K








                  (23) 

 
where, φ is the internal friction angle used in Mohr-Coulomb model. The parameter β	is commonly termed as the friction 
angle (in case of dealing with the Drucker-Prager theory), which can be computed as the slope of the yield function in the 
t-p meridian plane (see Fig. 10a. By a similar computing approach for K, it is possible to derive β according to Eq. (24). 
 

6sin
arctan( )

3 sin








                 (24) 

 
It is worth mentioning that both the parameter can be defined in ABAQUS as a function of temperature and other field 
variables. However, they are considered as constant variables in this study because of the negligible effect of the other fields. 
The parameter d, called the cohesion of the material (in case of dealing with the Drucker-Prager model), is defined 
automatically by ABAQUS according to Eq. (25). 
 

1
( ) (1 tan )

3 pu cpd                      (25) 

 
where, u c  is the unconfined (uniaxial) compression stress. An isotropic hardening is implemented for this model in 

ABAQUS by a sub-option called “Drucker-Prager Hardening” at the property module. Therefore, the tabular data from the 
compression post-yield stress-strain diagram can be used to define u c  (and accordingly d) as a function of the absolute 

plastic strain p . The plastic flow of the linear Drucker-Prager is considered by means of a flow potential function LDPG  

given by Eq. (26). 
 

tanLDPG t p                     (26) 
 
The parameter ψ, called dilation angle, specifies the direction of the plastic strain flow. As can be seen in Fig. 10a, the plastic 
flow is associative if ψ = β, otherwise it is non-associative. The parameters to identify the material model are reported in 
Tab. 6. The software automatically computes the cohesion by giving the yield stress in compression as a function of the 
plastic strain allowing the isotropic hardening of the yield function. 
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Figure 10: The Linear Drucker-Prager criterion; (a) t-p plane, (b) deviatoric plane. 

 
E [MPa] PR  [°] K [-]  [°] 
15374 0.28 65.38 0.778 16.35 

 

Table 6: The Drucker-Prager plasticity parameters. 
 
In this study, the failure criterion is intended as a yield surface, i.e. when Eq. (21) is satisfied, plastic flow occurs. Hardening 
of the yield function follows until the maximum strength is reached, afterwards failure is modeled by softening. Hardening 
(intended as hardening followed by softening) of the yield function (see Fig. 11) is described by the equation proposed by 
Lubliner et al., [42] for concrete as defined in Eq. (27). 
 

0 [(1 ) exp( ) exp( 2 )]p paf a bb                          (27) 
 

Eq. (27) expresses the flow stress  in a uniaxial test as a function of the axial plastic strain p . The elastic properties are 

taken from [36]. The Mohr-Coulomb friction angle is obtained through the procedure described in [43] using the properties 
reported in Tab. 7. To assure convexity of the yield function, the value of the flow-stress ratio is limited by a minimum value 
of 0.778. Since the obtained value is lower, the minimum value allowable is used instead resulting in the criterion obtained 
not being equivalent to the starting Mohr-Coulomb criterion but being its best approximation [30]. 
 

UCS, mf  [MPa] Tensile splitting strength [MPa] Yield stress, 0f [MPa] p  

67.99 5.66 53.79 0.00057 
 

Table 7. The experimental data of the Pietra-Serena sandstone. 
 
A good approximation of the dilation angle for rock showing brittle behavior is equal to 1/4 times the friction angle [44]. 
In Tab. 7, the parameters to define the curve of Eq. (27) are reported. The parameters a and b, which are obtained using 
Eqs. (28) and (29), are determined equal to 2.68 and 665.32, respectively. It is worth mentioning that the plastic strain at Eq. 
(29) (to define the parameter b) is determined when the derivative of Eq. (27) is equal to zero. This plastic strain corresponds 
to the experimental data at which the maximum stress is reached. 
 

2

0 0 0

( ) 1 2 ( ) ( )m m mf f f
a

f f f
                    (28) 

 

1
lnp

a
b

a
   

 
                  (29) 

 

(a) (b) 



 

A. Mardaliazad et alii, Frattura ed Integrità Strutturale, 41 (2017) 504-523; DOI: 10.3221/IGF-ESIS.41.62                                                         
 

518 
 

Simulation of the four-point bending test 
Replication of the Flexural test was obtained by means of two numerical models that consists of rollers, compressive platens, 
steel blocks and the specimen. Due to the high computing time required for the KCC, and by help of the symmetric nature 
of the test, only one-quarter of the test was modelled in LS-DYNA (see Fig. 12a). Since the ghost particle methods (which 
is explained below) is not yet available in ABAQUS, the numerical model replicated in this software consists of the full 
model (see Fig. 12b). In all the models, the conversion to SPH particles is only considered for the rock specimen. The axes 
of rollers are fixed in the XY plane, while the displacement-controlled compressive loading is applied by the upper platens. 
The lower platens are limited to zero degree of freedom to represent the bed of the testing machine. The mechanical 
properties of these components are reported in Tab. 8. 
 

 
Figure 11: The post-yield stress-strain diagram in compression. 

 

 
 

Figure 12: The numerical models of Flexural test replicated in; (a) LS-DYNA, (b) ABAQUS. 
 

 Rollers Platens Steel blocks 

Section Solid Shell Solid 

Material model Elastic Rigid Elastic 

Density [ton/mm3] 7.85 e-9 7.85 e-9 7.85 e-9 

Elastic modulus [MPa] 1.9 e5 2.1 e5 2.1 e5 

Poisson ratio 0.3 0.3 0.3 
 

Table 8: The mechanical properties of the rollers, platens and steel blocks. 
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The hexagonal constant stress elements are used for all the solid parts. The automatic penalty-based formulation contacts 
are considered for all the components and the static friction coefficient is set to 0.4. In the LS-DYNA model, instead of 
applying single point constraints to the SPH particles, which can lead to inaccurate results and numerical instabilities, specific 
boundary conditions at the symmetry planes were imposed [39]. The BOUNDARY_SPH_SYMMETRY_PLANE keyword 
creates automatically an imaginary plane which reflects the forces of a set of ghost particles to the particles in the model. 
Although these ghost particles have identical properties as the real ones, they do not physically exist and simply contribute 
to the particle approximation [21].  
 

 
Figure 13: Distribution of numerical stresses in the X direction (along the length); (a) KCC model; (b) LDP model. 

 
The maximum principal strain is considered as the eroding criteria for FEM to SPH particles conversion for all the numerical 
simulations. The numerical results of KCC and LDP models in terms of stress distribution along length are shown in Fig. 
13a and b, respectively. 
Fig. 13 represents the distribution of the X stress (along the length of specimen) one time step before failure. The tensile 
and the compressive stresses at both numerical models are present in the element below and above the neutral axis, 
respectively. However, the amount of maximum stresses in the two models are different. This issue is discussed in next 
chapter by comparison of the numerical results with the experimental ones. 
 
 
COMPARISON OF THE NUMERICAL RESULTS WITH EXPERIMENTAL DATA 
 

he load-displacement diagrams of the numerical models; developed by the KCC (both the automatic input 
generation mode and the calibrated mode) and the LDP material models are compared to the experimental results 
according to Fig. 14 and Tab. 9. There is a row in Tab. 9, labeled as “95% CI” of experimental average value, that 

was also reported in Tab. 1. As previous described there is a probability of 95% that the average value of a set of populations 
lie inside this interval. Therefore, they can be considered a reasonable description of the physical phenomena thus suitable 
for comparing the numerical results. 
The KCC material model shows the best response compared to the others, since the reported values of all three parameters, 
i.e. Maximum load, Maximum displacement and Flexural strength, lie within the 95% Confidence Interval of the average 
value. As expected, the results obtained by the automatic input mode of the KCC model are not in good agreement with 
the experimental data. This issue is more critical in the displacement level, and the flexural strength is very close to the 
minimum value reported as 95% Confidence Interval.  
LDP predicts the flexural strength as 16.25 MPa which is far from the reported 95% Confidence Interval (with an 
overestimation of about 80% respect to the experimental average value). Therefore, it is not reliable to model the mechanical 
behaviour of Pietra Serena in case of a significant tensile stress is present. Indeed, the Drucker-Prager criterion is well 
suitable to model the linear dependence of the material strength with p. The material behaviour of rocks, for negative values 
of p, deviates from linearity and the material failure points lie below the Drucker-Prager failure line leading to the 
overestimation of the flexural strength of the material. The numerical results obtained by the full calibrated mode of KCC, 
on the other hand, show significant agreement with the experimental data. By recalling the fact that this material model is 

T 

(a) (b) 
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calibrated based on the Berea sandstone (experimental data of the triaxial compression test), two main conclusions can be 
drawn. Apart from the authors' hypothesis of a similar mechanical response of Pietra Serena and Berea sandstone, the 
efficiency of the KCC model for numerical modelling of rock materials, and in particular sandstones, has been evaluated 
here.  
 

 
Maximum Load 

[kN] 
Maximum 

Displacement [mm] 
Flexural Strength 

[MPa] 
KCC Automatic 3.10 0.137 7.13 
KCC Calibrated 3.54 0.337 8.14 
LDP 7.07 0.891 16.25 
    
“95% CI” of experimental data [3.1433 - 4.5275] [0.36737 - 0.74223] [7.2530 - 10.7140] 

 

Table 9: The numerical results of the flexural test, and the “95% CI” with respect to the average experimental data. 
  
Fig. 15 indicates the comparison of the numerical results and the experimental test after failure. The contour plots 
represented in Fig. 15a and b represent the “scaled damage measure, δ” and the maximum principal plastic strain at failure, 
respectively. As can be seen, the SPH particles formed at the instant of failure express the crack patterns observed during 
the experimental test (see Fig. 15c). 
 

 
 

Figure 14: The load-displacement diagram; the numerical results compared to the experimental ones.  
 
 
CONCLUSION 
 

he Four-Point Bending tests were performed based on the protocols of the ASTM standard. The average 
experimental flexural strength of Pietra Serena was measured as 8.98 MPa and Pietra Serena and Berea Sandstone 
show similar mechanical properties. The numerical simulations using the FEM-coupled to-SPH method were 

implemented in conjunction with the KCC and LDP material models. The KCC model showed a significant improvement 
when the material input parameters were calibrated and directly inserted into the material keyword, instead of the automatic 
input generator mode. While the LDP material model showed some limitation in analyses of the state of stress in which 
tensile behaviour is present. The specifications of the KCC calibrated material model are summarized in Tab. 10. 
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Figure 15: The comparison of the numerical results and the experimental test after failure. 

 
The flexural strength obtained by the numerical models developed by the LDP and the KCC automatic input mode lie 
significantly out of the 95% Confidence Intervals of the average value, as predicted from statistical elaboration of 
experimental data, while, this issue is solved by implementing the calibrated input mode of KCC. 
The coupling of SPH and FEM was proved to be a reliable method to simulate crack generation. This method was shown 
to be an effective solution to simulate several rock mechanics applications that deal with large deformations, e.g. penetration, 
drilling, perforation, etc.  

(a) 

(b) 
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The numerical results are expected to be improved by a direct material identification based on the Pietra Serena, i.e. the 
triaxial compression and isotropic compression tests.  
 

Density, RO [ton/mm3] Poisson ratio, PR NOUT RSIZE UCF 

2.00e-9 0.34 2.00 0.03937 145.00 

B1 B2 B3 ω Sλ Edrop LOC-WIDTH 

1.1 1.35 1.15 0.5 100 1.00 1.35 

A0 [MPa] A1 [MPa] A2 A0Y [MPa] A1Y [MPa] A2Y A1F [MPa] A2F 

34.458 0.65629 0.00097 21.621 1.11569 0.00251 0.7563 0.00097 
 

Table 10: The specifications of the full input mode of the KCC material model implemented for Berea sandstone. 
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