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Abstract. A semi-analytic solution for plastic collapse of a thin annular disk of variable thickness 

subject to thermo-mechanical loading is presented. It is assumed that the yield criterion depends on 

the hydrostatic stress. A distinguished feature of the boundary value problem considered is that 

there are two loading parameters. One of these parameters is temperature and the other is pressure 

over the inner radius of the disk. The general qualitative structure of the solution at plastic collapse 

is discussed in detail. It is shown that two different plastic collapse mechanisms are possible. One of 

these mechanisms is characterized by strain localization at the inner radius of the disk. The entire 

disk becomes plastic according to the other plastic collapse mechanism. In addition, two special 

regimes of plastic collapse are identified. According to one of these regimes, plastic collapse occurs 

when the entire disk is elastic, except its inner radius. According to the other regime, the entire disk 

becomes plastic at the same values of the loading parameters at which plastic yielding starts to 

develop. 

 

Introduction  
Thin annular disks subject to various loading conditions are a class of commonly used structures in 

mechanical engineering. The mechanical analysis and design of such disks may be based either on 

elastic or elastic-plastic solutions. In the latter approach, the state of plastic collapse is of great 

importance. The term plastic collapse is used here to denote the onset of unconstrained plastic flow. 

In most cases the state of plastic collapse is defined by the condition that the entire disk is plastic. In 

particular, analytical and semi-analytical solutions for fully plastic rotating disks as well as disks 

loaded by internal and external pressures have been proposed in [1 – 5]. A numerical technique to 

find the limit angular velocity of rotating disks has been developed [6]. However, another 

mechanism of plastic collapse may occur in thin disks and plates. According to this mechanism an 

unconstrained local thickening (or thinning) occurs at a certain radius of the disk. A comprehensive 

review of such solutions has been provided in [7]. The solution given in the present paper for an 

annular disk subject to thermo-mechanical loading demonstrates that both mechanisms of plastic 

collapse can occur. Moreover, the general qualitative structure of the plastic collapse solution is 

rather complicated. The formulation of the boundary value problem has been intentionally chosen 

as simple as possible to enable the semi-analytical solution. In particular, the temperature field is 

uniform and the initial thickness of the disk is constant. The pressure applied over the inner radius 

of the disk is also uniform. A review of solutions for a plate with a hole loaded by pressure has been 

given in [8]. An annular disk subject to thermal loading has been considered in [9]. The only 

possible mechanism of plastic collapse in this case occurs when the entire disk becomes plastic. 



 

Other aspects related to thermal loading of thin disks have been presented in [10  13]. Collapse 

mechanisms have not been studied in these works. 

A distinguished feature of the solution given in the present paper is that the disk is subject to the 

simultaneous action of both thermal and mechanical loads. This combination of loads applied to a 

long elastic cylinder has been considered in [14]. A solution for a rotating disk subject to thermal 

loading (therefore, there are also two loading parameters, temperature and angular velocity) has 

been proposed in [15]. The only collapse mechanism mentioned in this paper is associated with the 

fully plastic disk. General properties of limit load solutions in the case of multiple loading 

parameters have been considered in [16].   

Another distinguished feature of the present solution is that the yield criterion is pressure-dependent. 

This property is inherent in many metallic materials (see, for example, [17 – 20]). Using the 

pressure-dependent yield criterion proposed in [21] solutions for thin disks subject to mechanical 

loading have been found in [22, 23]. 

 

Statement of the Problem 

Consider a thin elastic-plastic annular disk of variable thickness subject to thermo-mechanical 

loading. The inner and outer radii of the disk are denoted by a0 and b0, respectively. It is convenient 

to introduce a cylindrical coordinate system (r, , z) whose z-axis coincides with the axis of 

symmetry of the disk. Then, the equations for the inner and outer radii of the disk are 0r a  and 

0r b , respectively. The initial thickness of the disk varies according to the equation [24] 
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The strains are supposed to be small. Let r ,   and z  be the normal stresses in the cylindrical 

coordinate system. The state of stress is plane, 0z  . It is assumed that the thickness of the disk is 

everywhere sufficiently small for the stresses to be averaged through the thickness. The disk is 

loaded by a uniform pressure P over its inner radius. This boundary condition can be written as 

 

 r P           (2) 

 

for 0r a . It is assumed that P is a monotonically increasing function of a time-like parameter and 

0P   at the initial instant. Let T be the increase in temperature from its initial value. Thus, by 

assumption, both 0P   and 0T   and the disk is stress free at the initial instant. The outer radius 

of the disk is fixed. Therefore, 

 

 0ru          (3) 

 

for 0r b . Here ru  is the radial displacement. It is evident that the problem is axisymmetric and the 

solution is independent of . Moreover, the normal stresses in the cylindrical coordinates are the 

principal stresses. 

It is assumed that plastic yielding is influenced by the hydrostatic stress, , according to the 

Drucker-Prager yield criterion [21] 

 

 0eq            (4) 

 



 

where eq  is the equivalent stress,  and 0  are material constants. In the case under consideration 

the hydrostatic stress and the equivalent stress are defined by 
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No specific relation between stress and strain (or strain rate) in the plastic zone is needed for limit 

analysis. 

It is convenient to normalize the stresses by 0  without changing the notation and to introduce the 

dimensionless radius by 0r b  . Then, Eqs. 2 and 3 become 

 

 r p    for a          (6) 

 

and 

 

 0u   for 1  .        (7) 

 

Here 0ru u b , 0 0a a b , and 0p P  .  

 

Elastic Solution 

Taking into account Eq. 1 the only non-trivial equilibrium equation can be written in the form 
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Solving this equation along with the Duhamel-Neumann law yields 
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where 0q E , E is Young modulus,   is Poisson’s ratio, 0TE   ,   is the thermal 

coefficient of linear expansion, and A and B are constants of integration. Also, 
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When p and  are small enough, the entire disk is elastic. In this case A and B are determined from 

the solution Eq. 9 using the boundary conditions Eq. 6 and Eq. 7 as  
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As a result of an increase in , or p or both, a plastic zone can appear at the inner radius of the disk. 

 

General Stress Solution in the Plastic Zone 

In order to find the general stress solution in the plastic zone, it is necessary to combine the yield 

criterion given in Eq. 4 and Eq. 8. 

In the case under consideration, the yield criterion is satisfied by the following substitution [23] 

  

 0 1 2 0 1 23 sin 3 cos , 3 sin 3 cosr                        (11) 

 

where 
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Substituting equation Eq. 11 into equation Eq. 8 gives 
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Using Eq. 11 the boundary condition given in Eq. 6 transforms to 

 

 0 1 23 sin 3 cosa a p              (14) 

 

where a  is the value of   at a  . The solution to Eq. 13 satisfying the condition a   at 

a   is 
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where   is a dummy variable of integration.  

Consider the mechanism of plastic collapse according to which the plastic zone occupies the entire 

disk. At the instant when plastic collapse occurs, the elastic zone reduces to the curve 1   in the 

-plane. The general solution given in Eq. 9 is valid in this vanishing elastic zone, though A and B 

are not given by the relations in Eq. 10. Since the stresses r  and   as well as the displacement u 

must be continuous across the elastic plastic boundary 1  , it follows from Eqs. 7, 9 and 11 that 
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where m  is the value of   at 1  . Using Eq. 15 this value is determined in implicit form as 
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Taking into account Eq. 14 the solution to Eqs. 16 and 17 gives a relation between p and  when the 

entire disk becomes plastic. However, a difficulty is that this system may have no solution.  

 

General Structure of the Solution at Plastic Collapse 

It will be seen later that the set of parameters at which the plastic zone starts to develop is also of 

importance for the solution at plastic collapse. When plastic yielding initiates the dependence of the 

radial and circumferential stresses on   is given by Eq. 11 at a  . The solution in Eq. 9 with A 

and B determined from Eq. 10 is valid in the range 1a   . The stresses r  and   as well as the 

displacement u must be continuous across the elastic plastic boundary a  . Therefore, 
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where 0  is the value of a  at the instant of the initiation of plastic yielding. Since eA  and eB  are 

expressed through p and , the dependence of p on  corresponding to the initiation of plastic 

yielding is determined from Eq. 18. Using the imposed restrictions 0p   and 0   it is possible to 

find the range of possible values of 0 , say 
   1 2

0 0 0    . A typical dependence of p on  

corresponding to the initiation of plastic yielding is illustrated in Fig. 1. The specific values of 

parameters used to find this curve are 1 2a  , 0.2  , 0n   and 0.3  . It is seen from Fig. 1 

that there is a local maximum of the function  p   at some value of k   (point k in Fig. 1). It is 

evident that   0dp d    at k  . Replacing eA  and eB  in Eq. 18 with p and  by means of Eq. 

10, differentiating and excluding 0d  yield 

 

 
 

Fig.1. Curve corresponding to the initiation of plastic yielding. 
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Here the relation between 1  and 2  given in Eq. 12 has been taken into account. It follows from 

Eq. 19 that the condition   0dp d    is equivalent to  
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Substituting this value of 0  in Eq. 18 it is possible to find the corresponding values of eA  and eB  

and, then, using Eq. 10 the values of p and k  . Moreover, it is evident that the coefficient of the 

derivative in Eq. 13 vanishes at 0   if 0  is determined from Eq. 20. For further convenience, it 

is advantageous to consider a general case assuming that c   and 1cos 3 sin 0c c    . In a 

particular case 0c   where 0  is determined from Eq. 20. Assume that c   at c  . In the 

vicinity of this point Eq. 13 transforms to 
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Integrating yields 
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to leading order. The plastic zone occupies the domain c  . Assume that 0c   where 0  is 

determined from Eq. 20. Then, it is possible to verify by inspection that the coefficient of c   in 

Eq. 22 is positive at 0c   and, therefore, the right hand side of this equation is negative in the 

range ca a       where 1  . This contradicts the left hand side of Eq. 22. Therefore, the 

plastic zone cannot start to develop. The physical interpretation of this mathematical feature of the 

solution is that plastic deformation is localized within a layer of infinitesimal thickness at a  . 

This corresponds to another mechanism of plastic collapse as compared to the state in which the 

entire disk is plastic. A remarkable property of the set of loading parameters at point k (Fig. 1) is 

that the disk losses its load carrying capacity without any plastic deformation in the domain 

1a   .  

Returning to the curve shown in Fig. 1, another point of great interest (point s in Fig. 1) corresponds 

to the value of 0 s   determined from the following equation 

   1 0 22 sin 3 cos 0s sn n        . The corresponding values of   and p can be found from 

Eqs. 10 and 18. It is evident that Eq. 13 has a special solution s   which is not obtainable from 

the solution given in Eq. 15. Then, it follows from Eq. 11 that the stresses r  and   are 

independent of  . The physical meaning of this mathematical feature of Eq. 13 is that the plastic 

zone occupies the entire disk once plastic yielding has initiated at a  . 

If the initiation of plastic yielding corresponds to any point of the curve shown in Fig. 1 other than 

points k or s, than the elastic/plastic boundary propagates from the surface a   until the plastic 

collapse occurs. As in the special cases considered, the same two plastic collapse mechanisms are 

possible. In particular, once the value of a  has attained the value of  11 3 , the coefficient of the 

derivative in Eq. 13 vanishes. Eqs. 21 and 22 are valid. Assuming that c a   it is possible to 

arrive at the same contradiction as before. Therefore, the solution cannot be extended beyond this 

value of a . The corresponding collapse mechanism is localization of plastic deformation at a  . 



 

Since 1  is constant for a given material, the critical value of a  is also constant. Then, it follows 

from Eq. 14 that the value of p at plastic collapse is independent of  . Therefore, this collapse 

mechanism is interpreted geometrically as a straight line parallel to the   – axis. This line is 

illustrated in Fig. 2 for 0   and 0.3  (line 2). The curve corresponding to the initiation of 

plastic yielding (curve 1) is tangent to this line at point k. Curve 1 has been found for 1 2a  , 

0  , 0n   and 0.3  . 

 

 
 

Fig.2. Illustration of the general structure of the solution. Curve 1 corresponds to the initiation 

of plastic yielding. Straight line 2 and curve 3 correspond to different plastic collapse mechanisms. 

 

 

In order to determine the curve corresponding to the other plastic collapse mechanism, it is 

necessary to solve Eq. 17 for m  numerically assuming that the value of a  is given. Then, the 

value of p immediately follows from Eq. 14. Eliminating A and B in Eq. 16 yields 

 

    1 0 21 sin 3 1 cosm m            .       (23) 

 

Since the value of m  has been determined, the corresponding value of   can be found from this 

equation. Thus the dependence of p on   is obtained in parametric form. This dependence is 

illustrated by curve 3 in Fig. 2 for 1 2a  , 0  , 0n   and 0.3  . Curves 1 and 3 have the same 

tangent line at point s. 

 

Conclusions 

A new semi-analytical solution for the state of plastic collapse of a thin annular disk of variable 

thickness subject to thermo-mechanical loading has been found. The numerical part of the solution 

reduces to solving Eq. 17 for m . Plastic yielding is influenced by the hydrostatic stress according 

to the Drucker-Prager yield criterion. The study has emphasized qualitative features of the plastic 

collapse solution whose general structure is illustrated in Fig. 2. It has been shown that there are 

two plastic collapse mechanisms. According to one of these mechanisms the load bearing capacity 

of the disk is lost because of strain localization at its inner radius. This mechanism is illustrated by 

line 2 in Fig. 2. It is seen that it is solely controlled by the dimensionless pressure over the inner 

radius of the disk. According to the other plastic collapse mechanism, the entire disk becomes 

plastic. The dependence between p and   corresponding to this mechanism is shown by curve 3 in 

Fig. 2. In addition to these two general cases, there are three special cases of great interest for both 

numerical solution of similar problems and interpretation of elastic/plastic plane stress solutions for 

thin-walled structures. These special cases are denoted by symbols k, s, and f in Fig. 2. If the state of 



 

stress corresponds to point k then the disk losses its load bearing capacity by plastic strain 

localization at its inner radius whereas the entire disk (except the inner radius) is elastic. If the state 

of stress corresponds to point s then the entire disk becomes plastic at the same values of the 

loading parameters at which plastic yielding appears (i.e. the plastic zone does not propagate from 

the inner radius of the disk as the loading parameters increase but occupies the entire disk instantly 

as the state of stress from the elastic solution attains point s). A distinguished feature of point f is 

that both of the aforementioned plastic collapse mechanisms occur simultaneously. It is expected 

that these qualitative features of the solution are rather common for a class of thin-walled structures 

and they can cause some difficulties with finding numerical solutions for such structures.  
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