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Abstract  To estimate fracture toughness of irradiated material in nuclear engineering, the testing 
specimens with half thickness of a standard compact tension specimen are used to get the J resistance curve 
of materials according to Standard Test Method for Measured of Fracture Toughness (ASTM E1820). The 
normalization method recommended by ASTM E1820 is not directly applied in obtaining the fracture 
toughness of metallic materials because it does not provide the plastic factor of Front Face Compact Tension 
specimen with 12.5mm thickness and 25mm width (1/2 FFCT specimen). Based on the energy of J integral 
and the detailed finite element analysis, the plastic factor of a 1/2 FFCT specimen is presented. With the 
plastic factor of 1/2 FFCT, the J resistance curve of a 1/2 FFCT specimen and its fracture toughness can be 
obtained by Using the normalization method. 
Keywords  Front face compact tension, Load line compact tension, Plastic factor, Finite element,  
normalization method 
 
1. Introduction 
 
Structural materials, A508-Ⅲ steel which long-term service in the radiation environment , must 
have material damage and material aging in nuclear engineering. Long-term, department of design 
and operations has focused on the nuclear reactor material damage by surveillance and prevention. 
The problem that measuring the fracture behavior of irradiated material A508-Ⅲ steel is need to be 
solved as quickly as possible. The fracture behaviors of material include the fracture toughness and 
crack growth rate of material and so on. Based on single specimen method, the 1/2FFCT specimen 
is selected to estimate the fracture toughness. Because the test material is irradiated, all operations 
are completed by the mechanical arm. The unload compliance method require the high of neutral 
and test accuracy, so applying of unload compliance is restricted in fracture mechanics automatic 
test technology. The unload compliance method does not good coordinate with the mechanics arm. 
It is recommended that the normalization data reduction technology be used to in ASTM E1820-11 
to determine J resistance curve and reduced test costs as well. The normalization data reduction 
technology involves the plastic factor of test bending specimen, so the plastic factor of 1/2FFCT 
specimen is quickly studied. 
There are two ways to obtain the plastic factor which are SLF (Slip Line Field) theory [1-4] and 
FEA (Finite Element Analysis) [5-10]. The SLF theory assume that material behavior is perfectly 
elastic-plastic. It establishes the contact the plastic factor with the limit load. The FEA studies the 
plastic factor which considering the different stain hardening, so the FEA can more accurate 
analysis the plastic factor. Based on the J integral energy theory [11] and the detailed finite element, 
the plastic factor of compact tension specimen is researched.  
 
2. Plastic Factor 
 
2.1. Plastic Factor of Load Line Compact Tension Specimen 
 
Rice [11] proposed the parameter J-integral for nonlinear elastic material as a measure of crack-tip 
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singularity intensity of HRR field [12-13]. Begley and Landes [14-15] first recognized that the J 
integral and its critical value can be evaluated experimentally from the interpretation of J as the 
energy release rate. A method for estimating the J from a single load-displacement record was 
proposed first by Rice et al. [16]. For a bending specimen with different sized cracks, Sumpter and 
Tuner [17] proposed a general expression of J integral. A total Δ  can be separated into an elastic 

component elΔ  and a plastic component plΔ , so the J integral would be expressed as 

el plJ J J= +                                   (1) 

where elJ  is the elastic component of J integral, plJ  is the plastic component of J integral. The 

elastic component of J can be directly calculated from the stress intensity factor K, as used in 
ASTM E1820-11 for a plane strain crack 
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in which E is the Young’s modulus and ν is the Poisson ratio. The plastic component of J is 
determined as 
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where P is the total generalized load or force of the component, B is the thickness, b is the 

remaining ligament, a is the crack size, plΔ  is a plastic component of load-point or load line 

displacement, ηΔ  is the plastic factor of load line compact tension specimen, plAΔ  is the plastic 

component of area under the measured P −Δ  curve. 
All expressions introduced above are valid only for stationary cracks. For a growing crack, the J 
integral should consider the crack growth correction. J integral is independent of the loading path, 
so J value is a function of two independent variables: Δ  and a according the deformation theory. 

From Eq 3, Ernst et al. [18] derived the complete differential of plJ  as 

pl pl pl
PdJ d J da

Bb b
η γΔ Δ= Δ −                                (4) 

In which γ Δ  is the geometry factor of load line compact tension specimen. The γ Δ as follows 
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Where the prime denotes the partial differential with respect to a/W, i.e. ( )' / /a Wη ηΔ Δ= ∂ ∂ . 
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Integrating Eq 4, one has 
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In which a0 is the initial crack size. 

Figure 1 illustrates a typical plP −Δ  curve for a growing crack. This figure includes the 

deformation paths for an original crack length a0 and also for two arbitrarily fixed crack lengths ai 

and ai+1. Since the plJ  in Eq 6 is valid for any loading path leading to the current values of ai and 

i
plΔ , its value at point A(or B) can be determined by following path OA (or OB) for the fixed crack 

length ai to the corresponding i
plΔ  (or 1i

pl
+Δ ) in the actual P −Δ  curve. Because da=0 on this 

loading path, from Eq 6, one has 
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where 1,
pl

i iA +
Δ  represents the area under the plP −Δ  curve between i

plΔ  and 1i
pl
+Δ  with an error of 

the area of triangle ABCΔ . Integration of Eq 6 along BC obtains an approximate result 
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From Eqs 7 to 9, one obtains 
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This incremental expression is the LLD-based (Load Line Displacement) J estimation equation that 
was adopted in ASTM E1820-11and all its predecessors, where the specimen thickness B is 
replaced by the net thickness BN for specimens with side grooves.  
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Figure1. Typical load versus plastic displacement curves for static and growing cracks 

 
2.2. Plastic factor of front face compact tension 
 
Following the similar route for deriving the LLD-based J equation, this section formulates an 
incremental CMOD-based (Crack Mouth Open Displacement) J estimation. A total CMOD, V, is 

separated into an elastic component elV  and a plastic component plV . As such, the total J can be 

decomposed into an elastic component elJ  and a plastic component plJ , as show in Eq 1. The elJ  

is defined in Eq 2, whereas the plJ  is determined by 
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where Vη  is the plastic factor of front face compact tension, pl
VA  is the area under the measured 

plP V− curve. Without loss of generality, it is assumed the ratio of plV  and plΔ  is a function of 

a/W [19] 
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Substitution Eq 12 into Eq 11 gives 
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From Eqs 3, 11, 12 and 13, three equivalent expressions for this new plastic factor are obtained 
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 Since plJ  is now the function of plV  and a, its complete differential is obtained as 
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where Vγ is the geometry factor of front face compact tension specimen. The Vγ  as follows 
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Substituting Eq 14 into Eq 16, it is interesting to find that Vγ γ Δ= . 

Integrating Eq 15 gives the plastic component of J in reference to the CMOD-based plastic factor 
and geometry factor 
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As similar to the load line compact tension specimen, we obtain the following CMOD-based J 
estimation equation for a growing crack 
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The CMOD-based J formulation is the other way to determine J resistance curves for 1/2FFCT 
specimens. 
Based on the detailed FEA, the plastic factor of front face compact tension specimen is investigated. 
The function, λ(a/W) , is obtained by linear fitting of the least squares method, considering the 
difference strain hardening of material mechanical behavior. Theλ(a/W) is expressed as (be shown 
as in Fig. 2) 
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Figure 2.  The function λ versus a/W curve 

From Eqs 12, 14, the plastic factor of front face compact tension specimen is fitted by the following 
curve 
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3 Conclusions 
1> Based on the FEA, the function λ(a/W) is got. 
2> Connecting FEA and functionλ(a/W), the plastic factor formulation of front face compact 
tension is obtained. 
3> Using the plastic factor of front face compact tension specimen, the J resistance curve would be 
perfectly solved by the normalization data reduction technology in ASTM E1820-11. 
Based on the plastic hinge theory of bending specimen and the plastic factor of load line compact 
tension, the unified plastic factor calculation is investigated in future. From the unified plastic factor, 
considering the normalization data reduction in ASTM E1820-11, the J resistance curve would be 
perfectly solved. 
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