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ABSTRACT

Dynamic photoelastic experiments were conducted to provide information
regarding the state of stress associated with a rapidly curving crack.
Analysis of the crack tip isochromatic patterns permitted evaluation of both
the singular and non singular components of the mixed mode stress field over
a region of reasonable size around the crack tip at various positions along

the crack path. The stress field coefficients obtained were then used to
predict the direction of the next segment of crack extension using the strain
energy density and the maximum circumferential stress criteria. This

predicted crack path was compared with the experimental data and showed good
agreement.
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INTRODUCTION

Trajectory problems in mechanics, such as the problem of determining the path
followed by a particle in a potential field such that it traverses the
distance between two points in the shortest time (the brachistochrone problem
first considered by Bernoulli), have long been recognized as being complex
[1]. The problem of prediction of the crack path in fracture mechanics is no
less so, even when attention is restricted to a two-dimensional planar crack
that is propagating at a constant speed [2].

The solution to the general crack trajectory problem requires: (a) the

computation of the stress intensity factors and other related stress field
parameters for a given crack in an arbitrary body at any instant in time; and
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(b) a means of defining the next increment of crack growth in terms of
geometrical parameters that are related to the previously computed information
about the crack tip stress field. The solution to this problem has been
attempted by a number of researchers for certain special cases, using either
closed-form, quasi-static, analytical solutions, or numerical techniques to
compute the small change of direction for each forward increment of crack
extension based on the maximization of the normal tensile stress ahead of the
crack tip [3].

The aim of the present work was to examine the path followed by the crack
relative to the stress field in the local region surrounding the crack tip.
This was done by first carefully evaluating the magnitude of both the singular
and the leading non-singular stress and strain components of the crack-tip
stress field for cracks propagating along smoothly curving paths in a brittle,
isotropic material, and then examining the crack path relative to the
magnitude of both the singular and non-singular stress field parameters.

The approach adopted here has been to use dynamic photoelasticity and a high
speed camera system of the Cranz-Schardin type to obtain full-field
information about the stress state surrounding the tip of a crack pPropagating
in a plate specimen fabricated from a brittle, birefringent polymer.

The resulting information was in the form of isochromatic fringe patterns, or
contours of constant maximum in-plane shear stress, which provided the data
base for further analyses. Local collocation procedures were then employed,
in which the appropriate stress field representations for running cracks were
combined with a multiple data point, overdeterministic, non-linear algorithm
to obtain the stress field parameters of interest in a least squares sense
[4,5,6]. These stress field parameters were then used to predict the
direction of the next segment of crack extension using the strain energy
density [7] and the maximum circumferential stress criteria [8].

Dynamic Crack Tip Stress Field Equations

It has been previously shown [9,10] that the mixed mode stress field
associated with a crack propagating at a constant velocity, c, is given in
terms of the local rectangular coordinated by
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where X;, X;, z; and z, are coordinate parameters defined in Fig. 1.

The leading coefficient in Z, and Z,, A,, is related to the opening mode
stress intensity factor K;, K; = A,/2n. The first coefficient in Z," and
Z,", C,, is related to the shear mode stress intensity factor Ki; = C_/2x.
The leading term in Y, and Y,, B,, gives rise to the superposed constant
stress in the direction of crack propagation and is related to the familiar
Oox term by o, = 2B,. The first term in series Y," and Y,", D,, does not
influence the stress field and as such cannot be determined from stress-
based information.

Minimum Strain Energy Density Criterion

The strain energy density criterion proposed by Sih [7] states that crack
growth takes place in the direction of minimum strain energy density. The
strain energy density, W, per unit volume, V, for plane stress conditions
is given by
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where E and v are the elastic modulus and Poisson’s ratio respectively. 1In
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:z::F to evaluate the direction of the Propagating crack the density of the
in energy at a core radius r, is minimized. Thus the direction of
crack propagation is obtained by

d [r dW] =0 and d2 r dwj] >
a6 S av - e E] ° @

Maximum Circumferential Stress Criterion

The maximum circumferential stress criterion postulates that crack
ext?n51on takes place in the direction perpendicular to the direction of
maximum tensile principal stress. The circumferential stress oy will be th
Principal stress if the shear stress Tr¢ = 0. Thus to obtain éL di Elon
of crack propagation © Grection

T =0=1 - i
- 2 (oy ax)sln20 + 1xyc0520 (10)

where eq. 10 is also evaluated at r = p

RESULTS AND DISCUSSION

Dynam}c phot?elasticity was used to record the isochromatic fringes
associated with a crack propagating along a curved path. Two exgeriment
were perform?d and the photographs are shown in Figs. 2 and 3 ghe deta?l
of the experimental procedure and the model geometry are giveA in Ref li °
In both the experiments the cracks pPropagated at a constant velocit éf 3é0
m/sec. Th? ?hotoelastic data were analyzed using the multipoint 7
overdeterministic method [4,5,6]. Good results with very low fringe order
errors (~3-5%) were obtained with five terms in each series for t:hg

field representation [10]. © stress

FlguFe 4 shows the variation of the stress intensity factors as a functi
of time for both the experiments. Mode I stress intensity factor show e
large value of K, varying from 1.3 to 1.6 MPa/m as the crack pPropagat > °
across the model. Mode II stress intensity factor, K on the ngzrif d
consistently shows a very smsll value, close to zero IIt’hroughout Fi re
5,6 an? ? show the variation of the higher order ter&s with time.aftefures
crack initiation. It is interesting to note that the values of the high
order term are not random but show a smooth trend with crack propagatisner

The experimental results thus obtained for both the experiments were used
to evalgate the state of stress (Oxx» Oyy and 7..) around the propagati y
cFack Flp. Knowing the dynanic state of stres?ﬂ the instantaneouf e
dlre?tlon of crack propagation was obtained at discrete times using the
strain energy density and the maximum circumferential criteria Tﬁe
resu1t§ are shown in Figs. 8 and 9. The crack path prediction; from both
the criteria match well with the actual crack path. It should be menti d
that the results are sensitive to the choice of the core radius, r T:ne
Zzéue oi.rclused in these calculation is the one suggested by R;muf& ande
aya i
resu{t: ;OL 3iéCkTE;:hélso happens to be the value which gives the best

CONCLUSIONS

1. The results show that for a rapidly curving crack the shear mode
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stress intensity factor is zero or close to zero, and does not vary
with changes in the crack trajectory.

Non singular stress field coefficients for both mode I and mode IT
series vary in a systematic fashion as the crack propagates across the

model.
3. The crack path predictions form both the strain energy density and the

maximum circumferential stress criteria match well with the
experimental data.
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Fig. 1

Crnick tip coodinate system.
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Fig. 2 Dynamic isochromatic fringes associated with a curving crack.
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Fig. 3 Dynamic isochromatic fringes associated with a curving crack.
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Fig. 8

Fig. 9

2

58

>

ti_: 020 | — ACTUAL CRACK PATH

z o STRAIN ENERGY

e DENSITY CRITERIA 4 EXPERIMENT 12
8 ousr =1.3 mm

(&)

1)

>

- 0.2t

o

<<

a

S oos | EXPERIMENT

P

(&)

g o004 |

N

>

2

T 000 YL b L 1 1 L
e 006 O0I0 014 0I8 022 026

NORMALIZED CRACK PATH x- COORDINATE, x/w

Comparison of the actual crack path with the results predicted from
the minimum strain energy density criterion.

3

~N

>

7 | — ACTUAL CRACK PATH

W 0.20

s & MAXIMUM EXPERIMENT (2
S CIRCUMFERENTIAL

S ole | STRESS

o CRITERIA

1

> rs1.3mm

T ol2 F

—

&

S o008 F EXPERIMENT

&

L e )

o

w 004 |

N

S

P=e

s

g 000 L1t L 1 L i L
= 006 010 014 0I8 022 026

NORMALIZED CRACK PATH x- COORDINATE, x/w

Comparison of the actual crack path with the results predicted from the

maximum circumferential stress criterion.

761





